scholarly journals Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility

Reproduction ◽  
2020 ◽  
Author(s):  
Shiyang Zhang ◽  
Yunhao Liu ◽  
Qian Huang ◽  
Shuo Yuan ◽  
Hong Liu ◽  
...  

Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. IFT172 is a component of the IFT complex. Global disruption of mouse Ift172 gene caused typical phenotypes of ciliopathy. Mouse Ift172 gene appears to translate two major proteins; the full-length protein is highly expressed in the tissues enriched in cilia, and the smaller 130 kDa one is only abundant in the testis. In male germ cells, IFT172 is highly expressed in the manchette of elongating spermatids. A germ cell-specific Ift172 mutant mice were generated, and the mutant mice did not show gross abnormalities. There was no difference in testis/body weight between the control and mutant mice, but more than half of the adult homozygous mutant males were infertile and associated with abnormally developed germ cells in the spermiogenesis phase. The cauda epididymides in mutant mice contained less developed sperm that showed significantly reduced motility, and these sperm had multiple defects in ultrastructure and bent tails. In the mutant mice, testicular expression levels of some IFT components, including IFT20, IFT27, IFT74, IFT81 and IFT140, and a central apparatus protein SPAG16L were not changed. However, expression levels of ODF2, a component of the outer dense fiber, and AKAP4, a component of fibrous sheath, and two IFT components IFT25 and IFT57 were dramatically reduced. Our findings demonstrate that IFT172 is essential for normal male fertility and spermiogenesis in mice, probably by modulating specific IFT proteins and transporting/assembling unique accessory structural proteins into spermatozoa.

2016 ◽  
Vol 27 (23) ◽  
pp. 3705-3716 ◽  
Author(s):  
Zhengang Zhang ◽  
Wei Li ◽  
Yong Zhang ◽  
Ling Zhang ◽  
Maria E. Teves ◽  
...  

Intraflagellar transport (IFT) is a conserved mechanism believed to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile, with significantly reduced sperm counts and motility. In addition, abnormally shaped, elongating spermatid heads and bulbous, round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria, and a decrease in mature lysosomes. The few developed sperm had disrupted axonemes, and some retained cytoplasmic lobe components on the flagella. ODF2 and SPAG16L, two sperm flagella proteins, failed to be incorporated into sperm tails of the mutant mice, and in the germ cells, both were assembled into complexes with lighter density in the absence of IFT20. Disrupting IFT20 did not significantly change expression levels of IFT88, a component of the IFT-B complex, and IFT140, a component of the IFT-A complex. Even though the expression level of an autophagy core protein that associates with IFT20, ATG16, was reduced in the testis of the Ift20 mutant mice, expression levels of other major autophagy markers, including LC3 and ubiquitin, were not changed. Our studies suggest that IFT20 is essential for male fertility and spermiogenesis in mice, and its major function is to transport cargo proteins for sperm flagella formation. It also appears to be involved in removing excess cytoplasmic components.


2020 ◽  
Vol 318 (6) ◽  
pp. C1092-C1106
Author(s):  
Wei Qu ◽  
Shuo Yuan ◽  
Chao Quan ◽  
Qian Huang ◽  
Qi Zhou ◽  
...  

Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.


2019 ◽  
Vol 102 (1) ◽  
pp. 233-247 ◽  
Author(s):  
Qian Huang ◽  
Hong Liu ◽  
Jing Zeng ◽  
Wei Li ◽  
Shiyang Zhang ◽  
...  

Abstract Intraflagellar transport protein 20 (IFT20) is essential for spermatogenesis in mice. We discovered that COPS5 was a major binding partner of IFT20. COPS5 is the fifth component of the constitutive photomorphogenic-9 signalosome (COP9), which is involved in protein ubiquitination and degradation. COPS5 is highly abundant in mouse testis. Mice deficiency in COPS5 specifically in male germ cells showed dramatically reduced sperm numbers and were infertile. Testis weight was about one third compared to control adult mice, and germ cells underwent significant apoptosis at a premeiotic stage. Testicular poly (ADP-ribose) polymerase-1, a protein that helps cells to maintain viability, was dramatically decreased, and Caspase-3, a critical executioner of apoptosis, was increased in the mutant mice. Expression level of FANK1, a known COPS5 binding partner, and a key germ cell apoptosis regulator was also reduced. An acrosome marker, lectin PNA, was nearly absent in the few surviving spermatids, and expression level of sperm acrosome associated 1, another acrosomal component was significantly reduced. IFT20 expression level was significantly reduced in the Cops5 knockout mice, and it was no longer present in the acrosome, but remained in the Golgi apparatus of spermatocytes. In the conditional Ift20 mutant mice, COPS5 localization and testicular expression levels were not changed. COP9 has been shown to be involved in multiple signal pathways, particularly functioning as a co-factor for protein ubiquitination. COPS5 is believed to maintain normal spermatogenesis through multiple mechanisms, including maintaining male germ cell survival and acrosome biogenesis, possibly by modulating protein ubiquitination.


2020 ◽  
Vol 318 (1) ◽  
pp. C174-C190 ◽  
Author(s):  
Zhenyu Wang ◽  
Yuqin Shi ◽  
Suheng Ma ◽  
Qian Huang ◽  
Yi Tian Yap ◽  
...  

GMAP210 (TRIP11) is a cis-Golgi network-associated protein and a Golgi membrane receptor for IFT20, an intraflagellar transport component essential for male fertility and spermiogenesis in mice. To investigate the role of GMAP210 in male fertility and spermatogenesis, floxed Gmap210 mice were bred with Stra8-iCre mice so that the Gmap210 gene is disrupted in spermatocytes and spermatids in this study. The Gmap210flox/flox: Stra8-iCre mutant mice showed no gross abnormalities and survived to adulthood. In adult males, testis and body weights showed no difference between controls and mutant mice. Low-magnification histological examination of the testes revealed normal seminiferous tubule structure, but sperm counts and fertility were significantly reduced in mutant mice compared with controls. Higher resolution examination of the mutant seminiferous epithelium showed that nearly all sperm had more oblong, abnormally shaped heads, while the sperm tails appeared to have normal morphology. Electron microscopy also revealed abnormally shaped sperm heads but normal axoneme core structure; some sperm showed membrane defects in the midpiece. In mutant mice, expression levels of IFT20 and other selective acrosomal proteins were significantly reduced, and their localization was also affected. Peanut-lectin, an acrosome maker, was almost absent in the spermatids and epididymal sperm. Mitochondrion staining was highly concentrated in the heads of sperm, suggesting that the midpieces were coiling around or aggregating near the heads. Defects in acrosome biogenesis were further confirmed by electron microscopy. Collectively, our findings suggest that GMAP210 is essential for acrosome biogenesis, normal mitochondrial sheath formation, and male fertility, and it determines expression levels and acrosomal localization of IFT20 and other acrosomal proteins.


2008 ◽  
Vol 52 (4) ◽  
pp. 333-344 ◽  
Author(s):  
Christopher Runyan ◽  
Ying Gu ◽  
Amanda Shoemaker ◽  
Leendert Looijenga ◽  
Christopher Wylie

2016 ◽  
Vol 311 (2) ◽  
pp. E396-E404 ◽  
Author(s):  
Rasmani Hazra ◽  
Dannielle Upton ◽  
Reena Desai ◽  
Omar Noori ◽  
Mark Jimenez ◽  
...  

Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCARm) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCARH) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts ( Rhox5, Spinw1), resulted in smaller adult TgSCARH testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCARm males, testes of adult TgSCARH males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCARH testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCARH Sertoli cells were increased levels of apoptotic germ cells in TgSCARH relative to TgSCARm testes. In addition, TgSCARH testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2466-2473 ◽  
Author(s):  
Benoit Souquet ◽  
Sophie Tourpin ◽  
Sébastien Messiaen ◽  
Delphine Moison ◽  
René Habert ◽  
...  

The mechanisms regulating the entry into meiosis in mammalian germ cells remain incompletely understood. We investigated the involvement of the TGF-β family members in fetal germ cell meiosis initiation. Nodal, a member of the TGF-β family, and its target genes are precociously expressed in embryonic gonads and show sexual dimorphism in favor of the developing testis. Nodal receptor genes, Acvr2a and Acvr2b, Alk4, and Tdgf1/Cripto, were identified in male germ cells. Nodal itself, Tdgf1, and Lefty1 and Lefty2 are targets of Nodal signaling and were all found specifically expressed in male germ cells. To elucidate the role of this signaling pathway, activin-like kinases that mediate TGF-β/Nodal/activin signaling were inhibited in 11.5 d postconception testis in organotypic culture. Activin-like kinases inhibition disrupted normal male germ cell development and induced germ cell entry into meiosis such as that observed in female germ cells at the equivalent stage. Interestingly Stra8, the gatekeeper of the mitotic/meiotic switch, was induced independently of any change of either Cyp26b1 or Fgf9 expression, the two genes currently identified as testicular meiotic inhibitors. On the other hand, recombinant Nodal significantly dampened Stra8 expression and germ cell meiosis in cultured 11.5 d postconception ovaries. Our results allowed us to propose for the first time an autocrine role of Nodal during the development of germ cells and indicate that members of the TGB-β family may reinforce the male fate and prevent meiosis in embryonic germ cells.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10582
Author(s):  
Fengsong Wang ◽  
Shuai Kong ◽  
Xuechun Hu ◽  
Xin Li ◽  
Bo Xu ◽  
...  

Background The DNAJ family of molecular chaperones maintains protein homeostasis in mitotic and postmeiotic cells, especially germ cells. Recently, we found that the transcription factor SOX30 initiates transcription of Dnajb8 during late meiosis and spermiogenesis in mouse testes. Methods We used the CRISPR/Cas9 system to generate Dnajb8 mutant mice and analyze the phenotype of the Dnajb8 mutants. Results AlthoughDnajb8 is an evolutionarily conserved gene, it is not essential for spermatogenesis and male fertility. We provide this phenotypic information, which could prevent duplicative work by other groups.


2021 ◽  
Author(s):  
Siyu Liu ◽  
Jintao Zhang ◽  
Zine Eddine Kherraf ◽  
Shuya Sun ◽  
Xin Zhang ◽  
...  

Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the Calmodulin and radial Spoke associated Complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and RS head. During early stages of Cfap61-/- spermatid development, the assembly of RS components is impaired. With the progress of spermiogenesis, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Paolo Chieffi ◽  
Bruno Varriale

There is increasing evidence that 17β-estradiol is necessary for normal male fertility. The aim of the present study was to characterize estrogen receptor β (ERβ) expression in a non-mammalian vertebrate model, the lizard (Podarcis s. sicula) testis. Immunocytochemical analysis shows that ERβ proteins are present among germ cells in the nucleus of the spermatogonia, in primary spermatocytes and spermatids. Western blot analysis with antibodies against the ERβ gene product revealed an isoform with a specific weight of 55 kDa. In conclusion, the widespread expression of ERβ in the Podarcis s. sicula testis is consistent with a role for estrogens in modulating spermatogenesis in the male.


Sign in / Sign up

Export Citation Format

Share Document