scholarly journals Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro

Reproduction ◽  
2001 ◽  
pp. 305-315 ◽  
Author(s):  
CE Green ◽  
J Bredl ◽  
WV Holt ◽  
PF Watson ◽  
A Fazeli

After mating, mammalian spermatozoa are transported to the lower oviductal isthmus. Spermatozoa are sequestered at the isthmus by attaching and interacting with oviductal epithelial cells, hence forming a sperm reservoir. In several mammalian species, specific carbohydrates mediate sperm-oviductal epithelial cell binding. A quantitative in vitro free cell bioassay was developed to investigate the involvement of carbohydrate recognition in pig sperm-oviductal epithelial cell interactions. This assay was validated. The sensitivity of the assay was such that it was possible to discriminate between different sperm concentrations and sperm-oviductal epithelial cell co-incubation periods, spermatozoa with damaged plasma membranes and epithelial cells of non-reproductive origin. Optimal conditions were used to incubate spermatozoa and oviductal epithelial cells in the presence of six hexose sugars at concentrations of 0, 2, 10 and 50 mmol l(-1). A significant (P < or = 0.05) reduction in the binding of spermatozoa to the oviductal epithelium was detected with 2, 10 and 50 mmol maltose l(-1), 50 mmol lactose l(-1) and 50 mmol mannose l(-1). These findings support the hypothesis that attachment of pig spermatozoa to oviductal epithelium before fertilization is mediated by carbohydrate recognition.

2011 ◽  
Vol 301 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
Justine Elliott ◽  
Nadezhda N. Zheleznova ◽  
Patricia D. Wilson

c-Src is a non-receptor tyrosine kinase whose activity is induced by phosphorylation at Y418 and translocation from the cytoplasm to the cell membrane. Increased activity of c-Src has been associated with cell proliferation, matrix adhesion, motility, and apoptosis in tumors. Immunohistochemistry suggested that activated (pY418)-Src activity is increased in cyst-lining autosomal dominant polycystic kidney disease (ADPKD) epithelial cells in human and mouse ADPKD. Western blot analysis showed that SKI-606 (Wyeth) is a specific inhibitor of pY418-Src without demonstrable effects on epidermal growth factor receptor or ErbB2 activity in renal epithelia. In vitro studies on mouse inner medullary collecting duct (mIMCD) cells and human ADPKD cyst-lining epithelial cells showed that SKI-606 inhibited epithelial cell proliferation over a 24-h time frame. In addition, SKI-606 treatment caused a striking statistically significant decrease in adhesion of mIMCD and human ADPKD to extracellular collagen matrix. Retained viability of unattached cells was consistent with a primary effect on epithelial cell anchorage dependence mediated by the loss of extracellular matrix (ECM)-attachment due to α2β1-integrin function. SKI-606-mediated attenuation of the human ADPKD hyperproliferative and hyper-ECM-adhesive epithelial cell phenotype in vitro was paralleled by retardation of the renal cystic phenotype of Pkd1 orthologous ADPKD heterozygous mice in vivo. This suggests that SKI-606 has dual effects on cystic epithelial cell proliferation and ECM adhesion and may have therapeutic potential for ADPKD patients.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


Reproduction ◽  
2006 ◽  
Vol 131 (2) ◽  
pp. 311-318 ◽  
Author(s):  
D Waberski ◽  
F Magnus ◽  
F Ardón ◽  
A M Petrunkina ◽  
K F Weitze ◽  
...  

In vitro short-term storage of boar semen for up to 72 h before insemination negatively affects fertility, but this often remains undetected during semen quality assessment. One important sperm function is the ability to form the functional sperm reservoir in the oviduct. In the present study, we used the modified oviductal explant assay to study sperm binding to oviductal epithelium in vitro in diluted boar semen stored for 24 or 72 h. First, we determined the kinetics of in vitro sperm binding to oviductal epithelium in relation to co-incubation time of sperm and oviductal tissue pieces. Then, we studied how the binding of sperm to oviductal epithelium was affected by in vitro semen storage and by differences among individual boars. Sperm binding after different incubation times was significantly higher when semen was stored 24 h than after 72-h storage (P < 0.05), and peaked at 30–90 min of incubation. Sperm binding differed between boars (n = 44), and was negatively correlated to the percentage of sperm with cytoplasmic droplets (R = −0.51, P < 0.001). There were no significant changes in motility, acrosome integrity and propidium iodide stainability during the 72-h storage period. However, sperm-binding indices were significantly lower after 72 h in vitro storage than after 24-h storage in sperm from boars with normal semen quality (P < 0.05); in contrast, the binding capacity of sperm from boars with higher percentages of morphologically altered sperm remained at a low level. The sperm-binding capacity of sperm from four of the five boars with known subfertility was lower than the mean binding index minus one standard deviation of the boar population studied here. It is concluded that changes in the plasma membrane associated with in vitro ageing reduce the ability of stored boar sperm to bind to the oviductal epithelium. This study shows the potential of sperm–oviduct binding as a tool to assess both male fertility and changes in sperm function associated with in vitro ageing.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 867
Author(s):  
Olga Povolyaeva ◽  
Yaroslava Chalenko ◽  
Egor Kalinin ◽  
Olga Kolbasova ◽  
Elena Pivova ◽  
...  

L. monocytogenes is a widespread facultative intracellular pathogen. The range of natural hosts that supporting L. monocytogenes persistence in the environment has not been fully established yet. In this study, we were interested in the potential of L. monocytogenes to infect cells of bats, which are being increasingly recognized as a reservoir for microorganisms that are pathogenic to humans and domestic animals. A stable epithelial cell line was developed from the kidneys of Pipistrellus nathusii, a small bat widely distributed across Europe. The wild-type L. monocytogenes strain EGDe infected this cell line with an invasion efficiency of 0.0078 ± 0.0009%. Once it entered bat cells, L. monocytogenes doubled within about 70 min. When L. monocytogenes lacked either of the major invasion factors, InlA and InlB, invasion efficiency decreased by a factor of 10 and 25 respectively (p < 0.000001). The obtained results suggest that bat epithelial cells are susceptible to L. monocytogenes infection and that L. monocytogenes invasion of bat cells depends on the major invasion factors InlA and InlB. These results constitute the first report on in vitro studies of L. monocytogenes infection in bats.


2019 ◽  
Vol 244 (7) ◽  
pp. 554-564 ◽  
Author(s):  
Ana Klisuric ◽  
Benjamin Thierry ◽  
Ludivine Delon ◽  
Clive A Prestidge ◽  
Rachel J Gibson

M cells are an epithelial cell population found in the follicle-associated epithelium overlying gut-associated lymphoid tissues. They are specialized in the transcytosis of luminal antigens. Their transcytotic capacity and location in an immunocompetent environment has prompted the study of these cells as possible targets for oral drug delivery systems. Currently, the models most commonly used to study M cells are restricted to in vivo experiments conducted in mice, and in vitro studies conducted in models comprised either of primary epithelial cells or established cell lines of murine or human origin. In vitro models of the follicle-associated epithelium can be constructed in several ways. Small intestinal Lgr5+ stem cells can be cultured into a 3D organoid structure where M cells are induced with RANKL administration. Additionally, in vitro models containing an “M cell-like” population can be obtained through co-culturing intestinal epithelial cells with cells of lymphocytic origin to induce the M cell phenotype. The evaluation of the efficiency of the variations of these models and their relevance to the in vivo human system is hampered by the lack of a universal M cell marker. This issue has also hindered the advancement of M cell-specific targeting approaches aimed at improving the bioavailability of orally administered compounds. This critical review discusses the different approaches utilized in the literature to identify M cells, their efficiency, reliability and relevance, in the context of commonly used models of the follicle-associated epithelium. The outcome of this review is a clearly defined and universally recognized criteria for the assessment of the relevance of models of the follicle-associated models currently used. Impact statement The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.


2006 ◽  
Vol 291 (4) ◽  
pp. L794-L801 ◽  
Author(s):  
Delbert R. Dorscheid ◽  
Benjamin J. Patchell ◽  
Oscar Estrada ◽  
Bertha Marroquin ◽  
Roberta Tse ◽  
...  

Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (∼0.5–1.3 mm2) were created in cultured 1HAEo−human airway epithelial cell monolayers, after which cells were treated with up to 10 μM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 μM dexamethasone was 43 ± 18% vs. 10 ± 8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 μM budesonide was 39 ± 4% vs. 43 ± 3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo−.Bcl-2+cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.


1995 ◽  
Vol 268 (2) ◽  
pp. L230-L238 ◽  
Author(s):  
D. J. Romberger ◽  
P. Pladsen ◽  
L. Claassen ◽  
M. Yoshida ◽  
J. D. Beckmann ◽  
...  

Fibronectin (Fn) is involved in the migration of epithelial cells in re-epithelialization of wounds. Epithelial cell-derived Fn is particularly potent as a chemotactic factor for bronchial epithelial cells (BECs) in vitro. Thus modulation of airway epithelial cell Fn may be a key aspect of airway repair. Insulin is both an important growth factor and known chemotactic factor for cultured BECs. We postulated that insulin may modulate Fn production of cultured BECs. We examined this hypothesis utilizing bovine BECs in culture with serum-free media with and without insulin. BECs grown in media without insulin released more Fn into culture supernatants and contained more Fn in cell layers than cells grown with insulin. Labeling of cells with [35S]methionine demonstrated an increase in new protein production and Fn mRNA expression was increased. Increased Fn in BEC cultures without insulin was associated with an increase in active transforming growth factor-beta (TGF-beta) release as measured by a standard bioassay. Increased BEC Fn in cultures without insulin was partially inhibited by exposure of cultures to TGF-beta antibody. Thus insulin appears to modulate BEC Fn production in vitro in part through a TGF-beta-dependent mechanism. Insulin may be involved in airway repair mechanisms through modulation of epithelial cell Fn production.


2004 ◽  
Vol 287 (1) ◽  
pp. L94-L103 ◽  
Author(s):  
Yunxia Q. O'Malley ◽  
Krzysztof J. Reszka ◽  
Douglas R. Spitz ◽  
Gerene M. Denning ◽  
Bradley E. Britigan

Production of pyocyanin enhances Pseudomonas aeruginosa virulence. Many of pyocyanin's in vitro and in vivo cytotoxic effects on human cells appear to result from its ability to redox cycle. Pyocyanin directly accepts electrons from NADH or NADPH with subsequent electron transfer to oxygen, generating reactive oxygen species. Reduced glutathione (GSH) is an important cellular antioxidant, and it contributes to the regulation of redox-sensitive signaling systems. Using the human bronchial epithelial (HBE) and the A549 human type II alveolar epithelial cell lines, we tested the hypothesis that pyocyanin can deplete airway epithelial cells of GSH. Incubation of both cell types with pyocyanin led to a concentration-dependent loss of cellular GSH (up to 50%) and an increase in oxidized GSH (GSSG) in the HBE, but not A549 cells, at 24 h. An increase in total GSH, mostly as GSSG, was detected in the culture media, suggesting export of GSH or GSSG from the pyocyanin-exposed cells. Loss of GSH could be due to pyocyanin-induced H2O2formation. However, overexpression of catalase only partially prevented the pyocyanin-mediated decline in cellular GSH. Cell-free electron paramagnetic resonance studies revealed that pyocyanin directly oxidizes GSH, forming pyocyanin free radical and O2−·. Pyocyanin oxidized other thiol-containing compounds, cysteine and N-acetyl-cysteine, but not methionine. Thus GSH may enhance pyocyanin-induced cytotoxicity by functioning as an alternative source of reducing equivalents for pyocyanin redox cycling. Pyocyanin-mediated alterations in cellular GSH may alter epithelial cell functions by modulating redox sensitive signaling events.


Sign in / Sign up

Export Citation Format

Share Document