scholarly journals Genomic imprinting and reproduction

Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 389-399 ◽  
Author(s):  
A K E Swales ◽  
N Spears

Genomic imprinting is the parent-of-origin specific gene expression which is a vital mechanism through both development and adult life. One of the key elements of the imprinting mechanism is DNA methylation, controlled by DNA methyltransferase enzymes. Germ cells undergo reprogramming to ensure that sex-specific genomic imprinting is initiated, thus allowing normal embryo development to progress after fertilisation. In some cases, errors in genomic imprinting are embryo lethal while in others they lead to developmental disorders and disease. Recent studies have suggested a link between the use of assisted reproductive techniques and an increase in normally rare imprinting disorders. A greater understanding of the mechanisms of genomic imprinting and the factors that influence them are important in assessing the safety of these techniques.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anne C Ferguson-Smith ◽  
Deborah Bourchis

The discovery of genomic imprinting by Davor Solter, Azim Surani and co-workers in the mid-1980s has provided a foundation for the study of epigenetic inheritance and the epigenetic control of gene activity and repression, especially during development. It also has shed light on a range of diseases, including both rare genetic disorders and common diseases. This article is being published to celebrate Solter and Surani receiving a 2018 Canada Gairdner International Award "for the discovery of mammalian genomic imprinting that causes parent-of-origin specific gene expression and its consequences for development and disease".


Author(s):  
Benjamin P. Oldroyd ◽  
Boris Yagound

Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’


2017 ◽  
Vol 7 (7) ◽  
pp. 2227-2234 ◽  
Author(s):  
Yasuaki Takada ◽  
Ryutaro Miyagi ◽  
Aya Takahashi ◽  
Toshinori Endo ◽  
Naoki Osada

Abstract Joint quantification of genetic and epigenetic effects on gene expression is important for understanding the establishment of complex gene regulation systems in living organisms. In particular, genomic imprinting and maternal effects play important roles in the developmental process of mammals and flowering plants. However, the influence of these effects on gene expression are difficult to quantify because they act simultaneously with cis-regulatory mutations. Here we propose a simple method to decompose cis-regulatory (i.e., allelic genotype), genomic imprinting [i.e., parent-of-origin (PO)], and maternal [i.e., maternal genotype (MG)] effects on allele-specific gene expression using RNA-seq data obtained from reciprocal crosses. We evaluated the efficiency of method using a simulated dataset and applied the method to whole-body Drosophila and mouse trophoblast stem cell (TSC) and liver RNA-seq data. Consistent with previous studies, we found little evidence of PO and MG effects in adult Drosophila samples. In contrast, we identified dozens and hundreds of mouse genes with significant PO and MG effects, respectively. Interestingly, a similar number of genes with significant PO effect were detect in mouse TSCs and livers, whereas more genes with significant MG effect were observed in livers. Further application of this method will clarify how these three effects influence gene expression levels in different tissues and developmental stages, and provide novel insight into the evolution of gene expression regulation.


Author(s):  
Andrés G. de la Filia ◽  
Andrew J. Mongue ◽  
Jennifer Dorrens ◽  
Hannah Lemon ◽  
Dominik R. Laetsch ◽  
...  

AbstractGenetic conflict is considered a key driver in the evolution of new reproductive and sex determining systems. In particular, reproductive strategies with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally-inherited chromosomes to their offspring, while the paternal homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between paternal and maternal genomes over transmission to future generations. In several clades with PGE, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not just eliminated from sperm, but also heterochromatinised early in development and thought to remain inactive. Such paternal genome silencing could alleviate genetic conflict between paternal alleles over transmission. However, it is unclear if paternal chromosomes are indeed genetically inert in both soma and germline. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs. We show that expression is globally biased towards the maternal genome, but detect activity of paternal chromosomes in both somatic and reproductive tissues. Up to 70% of somatically-expressed genes are to some degree paternally-expressed. However, paternal genome expression is much more restricted in the testis, with only 20% of genes showing paternal contribution. Finally, we show that the patterns of parent-of-origin-specific gene expression are remarkably similar across genotypes and that those genes with biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting (parent-of-origin specific gene expression) in insects. Furthermore, it enhances our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.


2018 ◽  
Vol 115 (42) ◽  
pp. E9962-E9970 ◽  
Author(s):  
Haifeng Zhu ◽  
Wenxiang Xie ◽  
Dachao Xu ◽  
Daisuke Miki ◽  
Kai Tang ◽  
...  

Genomic imprinting is a form of epigenetic regulation resulting in differential gene expression that reflects the parent of origin. In plants, imprinted gene expression predominantly occurs in the seed endosperm. Maternal-specific DNA demethylation by the DNA demethylase DME frequently underlies genomic imprinting in endosperm. Whether other more ubiquitously expressed DNA demethylases regulate imprinting is unknown. Here, we found that the DNA demethylase ROS1 regulates the imprinting of DOGL4. DOGL4 is expressed from the maternal allele in endosperm and displays preferential methylation and suppression of the paternal allele. We found that ROS1 negatively regulates imprinting by demethylating the paternal allele, preventing its hypermethylation and complete silencing. Furthermore, we found that DOGL4 negatively affects seed dormancy and response to the phytohormone abscisic acid and that ROS1 controls these processes by regulating DOGL4. Our results reveal roles for ROS1 in mitigating imprinted gene expression and regulating seed dormancy.


2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


2012 ◽  
Vol 150 (1-3) ◽  
pp. 137-146 ◽  
Author(s):  
Mohammad Ghasemzadeh-Hasankolai ◽  
Roozali Batavani ◽  
Mohamadreza Baghaban Eslaminejad ◽  
Mohammadali Sedighi-Gilani

2021 ◽  
Vol 9 ◽  
Author(s):  
Marco Gerdol ◽  
Claudia La Vecchia ◽  
Maria Strazzullo ◽  
Pasquale De Luca ◽  
Stefania Gorbi ◽  
...  

DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable and unique DNA methylation pattern that finely regulates mRNA transcription during development and determines tissue-specific gene expression. Currently, DNA methylation remains poorly investigated in mollusks and completely unexplored in Mytilus galloprovincialis. To shed light on this process in this ecologically and economically important bivalve, we screened its genome, detecting sequences homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously described in other organisms. We characterized the gene architecture and protein domains of the mussel sequences and studied their phylogenetic relationships with the ortholog sequences from other bivalve species. We then comparatively investigated their expression levels across different adult tissues in mussel and other bivalves, using previously published transcriptome datasets. This study provides the first insights on DNA methylation regulators in M. galloprovincialis, which may provide fundamental information to better understand the complex role played by this mechanism in regulating genome activity in bivalves.


2017 ◽  
Vol 284 (1849) ◽  
pp. 20162699 ◽  
Author(s):  
Alberto J. C. Micheletti ◽  
Graeme D. Ruxton ◽  
Andy Gardner

Recent years have seen an explosion of multidisciplinary interest in ancient human warfare. Theory has emphasized a key role for kin-selected cooperation, modulated by sex-specific demography, in explaining intergroup violence. However, conflicts of interest remain a relatively underexplored factor in the evolutionary-ecological study of warfare, with little consideration given to which parties influence the decision to go to war and how their motivations may differ. We develop a mathematical model to investigate the interplay between sex-specific demography and human warfare, showing that: the ecology of warfare drives the evolution of sex-biased dispersal; sex-biased dispersal modulates intrafamily and intragenomic conflicts in relation to warfare; intragenomic conflict drives parent-of-origin-specific patterns of gene expression—i.e. ‘genomic imprinting’—in relation to warfare phenotypes; and an ecological perspective of conflicts at the levels of the gene, individual, and social group yields novel predictions as to pathologies associated with mutations and epimutations at loci underpinning human violence.


Sign in / Sign up

Export Citation Format

Share Document