scholarly journals Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors

Reproduction ◽  
2003 ◽  
Vol 125 (4) ◽  
pp. 479-493
Author(s):  
S. Warner
Reproduction ◽  
2003 ◽  
pp. 479-493 ◽  
Author(s):  
SM Warner ◽  
FV Conlon ◽  
MT Kane

The preimplantation period in the rabbit consists of a 3 day cleavage stage during which the number of cells increases with little change in embryo size, followed by a 3-4 day blastocyst stage during which the inner cell mass, the blastocoel and the trophectodermal layer are formed and the embryo grows rapidly in size and protein content. This study used [(3)H]inositol to investigate the transport of inositol, an essential component of the phosphatidylinositol signal transduction system, over the 6 days of preimplantation development by rabbit embryos. In the presence of 15 micromol inositol l(-1) in the incubation medium, there was a small linear increase in inositol uptake from 0.07 pmol per embryo per h at the one-cell stage (day 1) to 0.135 pmol at the late morula (day 3) stage. Inositol uptake increased to 0.58 pmol per embryo per h for early blastocysts (day 4) and 23.7 pmol for late blastocysts (day 6). There was a significant linear relationship between inositol uptake and blastocyst diameter and surface area. Efflux of inositol from early morulae was minimal (about 1.25% of embryo content per h), whereas efflux from mid-blastocysts (day 5) was much greater (about 15.6% of embryo content per h). Efflux of inositol from both early morulae and mid-blastocysts was increased by decreasing the osmolality of the incubation medium. Varying the osmolality had no effect on inositol uptake up to 2 h. Inositol uptake was dependent on sodium in cleavage-stage embryos but independent of sodium in blastocyst stages. In early morulae, inositol uptake was inhibited by glucose and the sodium-dependent hexose transport inhibitor, phloridzin, but not by the facilitated transport inhibitor, phloretin. Inositol uptake in early morulae was saturable; estimates of 0.227 and 0.288 pmol per morula per h for V(max) and 0.045 and 0.038 micromol l(-1) for K(m) were obtained for sodium-dependent transport in two separate experiments. All of these results are consistent with the hypothesis that transport in cleavage stages occurs via a sodium myo-inositol transporter (SMIT) protein. Uptake in blastocysts was non-saturable. Uptake into blastocysts appeared to take place by a transcellular rather than a paracellular route.


Author(s):  
Awtar Krishan ◽  
Dora Hsu

Cells exposed to antitumor plant alkaloids, vinblastine and vincristine sulfate have large proteinacious crystals and complexes of ribosomes, helical polyribosomes and electron-dense granular material (ribosomal complexes) in their cytoplasm, Binding of H3-colchicine by the in vivo crystals shows that they contain microtubular proteins. Association of ribosomal complexes with the crystals suggests that these structures may be interrelated.In the present study cultured human leukemic lymphoblasts (CCRF-CEM), were incubated with protein and RNA-synthesis inhibitors, p. fluorophenylalanine, puromycin, cycloheximide or actinomycin-D before the addition of crystal-inducing doses of vinblastine to the culture medium. None of these compounds could completely prevent the formation of the ribosomal complexes or the crystals. However, in cells pre-incubated with puromycin, cycloheximide, or actinomycin-D, a reduction in the number and size of the ribosomal complexes was seen. Large helical polyribosomes were absent in the ribosomal complexes of cells treated with puromycin, while in cells exposed to cycloheximide, there was an apparent reduction in the number of ribosomes associated with the ribosomal complexes (Fig. 2).


1984 ◽  
Vol 51 (01) ◽  
pp. 119-124 ◽  
Author(s):  
M B Zucker ◽  
N C Masiello

SummaryMacIntyre et al. showed that over 1 mM dithiothreitol (DTT) aggregates blood platelets in the presence of fibrinogen; aggregation is not inhibited by prostaglandin E1. We confirmed their data and found that 70 mM 2-mercaptoethanol was also active. DTT- induced aggregation was not associated with platelet shape change or secretion of dense granule contents, was not inhibited by tetracaine or metabolic inhibitors, was prevented at pH 6.5, and prevented, reversed, or arrested by EDTA, depending on when the EDTA was added. DTT did not cause aggregation of thrombasthenic, EDTA-treated, or cold (0° C) platelets, which also failed to aggregate with ADP. Platelets stimulated with DTT bound 125I-labeled fibrinogen. Thus DTT appears to “expose” the fibrinogen receptors. SDS gel electrophoresis of platelet fractions prepared by use of Triton X-114 showed that aggregating concentrations of DTT reduced proteins of apparent Mr 69,000 and 52,000 (probably platelet albumin) and, to a variable extent, glycoproteins Ib, IIb and III. Exposure of unlabeled or 125I- labeled platelets to ADP had no discernible effect on the electrophoretic patterns.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Juan Vélez ◽  
Zahady Velasquez ◽  
Liliana M. R. Silva ◽  
Ulrich Gärtner ◽  
Klaus Failing ◽  
...  

Cryptosporidium parvum is an apicomplexan zoonotic parasite recognized as the second leading-cause of diarrhoea-induced mortality in children. In contrast to other apicomplexans, C.parvum has minimalistic metabolic capacities which are almost exclusively based on glycolysis. Consequently, C. parvum is highly dependent on its host cell metabolism. In vivo (within the intestine) infected epithelial host cells are typically exposed to low oxygen pressure (1–11% O2, termed physioxia). Here, we comparatively analyzed the metabolic signatures of C. parvum-infected HCT-8 cells cultured under both, hyperoxia (21% O2), representing the standard oxygen condition used in most experimental settings, and physioxia (5% O2), to be closer to the in vivo situation. The most pronounced effect of C. parvum infection on host cell metabolism was, on one side, an increase in glucose and glutamine uptake, and on the other side, an increase in lactate release. When cultured in a glutamine-deficient medium, C. parvum infection led to a massive increase in glucose consumption and lactate production. Together, these results point to the important role of both glycolysis and glutaminolysis during C. parvum intracellular replication. Referring to obtained metabolic signatures, we targeted glycolysis as well as glutaminolysis in C. parvum-infected host cells by using the inhibitors lonidamine [inhibitor of hexokinase, mitochondrial carrier protein (MCP) and monocarboxylate transporters (MCT) 1, 2, 4], galloflavin (lactate dehydrogenase inhibitor), syrosingopine (MCT1- and MCT4 inhibitor) and compound 968 (glutaminase inhibitor) under hyperoxic and physioxic conditions. In line with metabolic signatures, all inhibitors significantly reduced parasite replication under both oxygen conditions, thereby proving both energy-related metabolic pathways, glycolysis and glutaminolysis, but also lactate export mechanisms via MCTs as pivotal for C. parvum under in vivo physioxic conditions of mammals.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 445
Author(s):  
Arthur Zastepa ◽  
Todd R. Miller ◽  
L. Cynthia Watson ◽  
Hedy Kling ◽  
Susan B. Watson

The understanding of deep chlorophyll layers (DCLs) in the Great Lakes—largely reported as a mix of picoplankton and mixotrophic nanoflagellates—is predominantly based on studies of deep (>30 m), offshore locations. Here, we document and characterize nearshore DCLs from two meso-oligotrophic embayments, Twelve Mile Bay (TMB) and South Bay (SB), along eastern Georgian Bay, Lake Huron (Ontario, Canada) in 2014, 2015, and 2018. Both embayments showed the annual formation of DCLs, present as dense, thin, metalimnetic plates dominated by the large, potentially toxic, and bloom-forming cyanobacteria Planktothrix cf. isothrix. The contribution of P. cf. isothrix to the deep-living total biomass (TB) increased as thermal stratification progressed over the ice-free season, reaching 40% in TMB (0.6 mg/L at 9.5 m) and 65% in South Bay (3.5 mg/L at 7.5 m) in 2015. The euphotic zone in each embayment extended down past the mixed layer, into the nutrient-enriched hypoxic hypolimnia, consistent with other studies of similar systems with DCLs. The co-occurrence of the metal-oxidizing bacteria Leptothrix spp. and bactivorous flagellates within the metalimnetic DCLs suggests that the microbial loop plays an important role in recycling nutrients within these layers, particularly phosphate (PO4) and iron (Fe). Samples taken through the water column in both embayments showed measurable concentrations of the cyanobacterial toxins microcystins (max. 0.4 µg/L) and the other bioactive metabolites anabaenopeptins (max. ~7 µg/L) and cyanopeptolins (max. 1 ng/L), along with the corresponding genes (max. in 2018). These oligopeptides are known to act as metabolic inhibitors (e.g., in chemical defence against grazers, parasites) and allow a competitive advantage. In TMB, the 2018 peaks in these oligopeptides and genes coincided with the P. cf. isothrix DCLs, suggesting this species as the main source. Our data indicate that intersecting physicochemical gradients of light and nutrient-enriched hypoxic hypolimnia are key factors in supporting DCLs in TMB and SB. Microbial activity and allelopathy may also influence DCL community structure and function, and require further investigation, particularly related to the dominance of potentially toxigenic species such as P. cf. isothrix.


2021 ◽  
Vol 22 (11) ◽  
pp. 5499
Author(s):  
Veronica Corsetti ◽  
Carla Perrone-Capano ◽  
Michael Sebastian Salazar Intriago ◽  
Elisabetta Botticelli ◽  
Giancarlo Poiana ◽  
...  

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a “cholinergic locus”, and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 139
Author(s):  
Wiktoria Blaszczak ◽  
Zhengchu Tan ◽  
Pawel Swietach

A fundamental phenotype of cancer cells is their metabolic profile, which is routinely described in terms of glycolytic and respiratory rates. Various devices and protocols have been designed to quantify glycolysis and respiration from the rates of acid production and oxygen utilization, respectively, but many of these approaches have limitations, including concerns about their cost-ineffectiveness, inadequate normalization procedures, or short probing time-frames. As a result, many methods for measuring metabolism are incompatible with cell culture conditions, particularly in the context of high-throughput applications. Here, we present a simple plate-based approach for real-time measurements of acid production and oxygen depletion under typical culture conditions that enable metabolic monitoring for extended periods of time. Using this approach, it is possible to calculate metabolic fluxes and, uniquely, describe the system at steady-state. By controlling the conditions with respect to pH buffering, O2 diffusion, medium volume, and cell numbers, our workflow can accurately describe the metabolic phenotype of cells in terms of molar fluxes. This direct measure of glycolysis and respiration is conducive for between-runs and even between-laboratory comparisons. To illustrate the utility of this approach, we characterize the phenotype of pancreatic ductal adenocarcinoma cell lines and measure their response to a switch of metabolic substrate and the presence of metabolic inhibitors. In summary, the method can deliver a robust appraisal of metabolism in cell lines, with applications in drug screening and in quantitative studies of metabolic regulation.


Sign in / Sign up

Export Citation Format

Share Document