scholarly journals Synthesis and Properties of Highly Efficient Thermoelectric Materials Based on Lead Telluride with Antimony and Silver Impurity

2015 ◽  
Vol 16 (1) ◽  
pp. 49-54
Author(s):  
D. M. Freik ◽  
S. І. Mudriy ◽  
Ts. A. Kriskov ◽  
І. V. Gorіchok ◽  
O. M. Matkіvsky ◽  
...  

The paper presents the results of research of X-ray diffraction and thermoelectric parameters (thermoelectric coefficient α, electrical conductivity σ and thermal conductivity coefficient k) of materials based on Lead Telluride: PbTe, PbTe:Sb, PbTe-Sb2Te3, Pb18Ag1Sb1Te20, Pb18Ag2Te20 and PbTe-Ag2Te. Established that the highest values of thermoelectric figure of merit have samples of PbTe:Sb (0,3 at.%) and system Pb18Ag1Sb1Te20, Pb18Ag2Te20. For PbTe:Sb is due to a significant increase of the electrical conductivity. For the other two materials is due to a increase the thermoelectric coefficient and a significant decrease of thermal conductivity compared to pure PbTe.

2015 ◽  
Vol 16 (1) ◽  
pp. 62-67
Author(s):  
O. M. Matkivsky

An X-ray diffraction structural study and measurement of Seebeck coefficient (S), the electrical conductivity (σ) and thermal conductivity (χ) for Lead Telluride with nanoinclusions of ZnO. The calculated value of the specific thermoelectric power (S2σ) and thermoelectric figure of merit (ZT). It was established that the addition of ZnO powder Nanodispersed diameter grains (40-60) nm PbTe reduces the thermal conductivity of the material, and at 0.5 wt.% ZnO to an increase of lead telluride thermoelectric figure of merit to ZT≈1,3.


Author(s):  
Ч.И. Абилов ◽  
М.Ш. Гасанова ◽  
Н.Т. Гусейнова ◽  
Э.К. Касумова

The results of studying the temperature dependences of electrical conductivity, thermoelectric coefficient, Hall mobility of charge carriers, total and electronic thermal conductivity, as well as phonon thermal resistance of alloys of (CuInSe2)1-x(In2Te3)x solid solutions at x=0.005 and 0.0075 are presented. The values ​​of these parameters for certain temperatures were used to calculate the values ​​of the thermoelectric figure of merit of the indicated compositions. It turned out that as the temperature rises, the thermoelectric figure of merit tends to grow strongly, from which it can be concluded that these materials can be used in the manufacture of thermoelements.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550008 ◽  
Author(s):  
Xingkai Duan ◽  
Konggang Hu ◽  
Shifeng Ding ◽  
Dahu Man ◽  
Wangnian Zhang ◽  
...  

Bi (1.98-x) In 0.02 Na x Te 2.7 Se 0.3 (x = 0, 0.02, 0.04, 0.06) and Bi 2 Te 2.7 Se 0.3 alloys were prepared by vacuum melting and hot pressing methods. The phase structure of the bulk samples were characterized by X-ray diffraction. Effects of indium and sodium co-substitutions for bismuth on the electrical and thermal transport properties were investigated in the temperature range of 298–473 K. Indium and sodium co-doping can enhance the carrier concentration, and accordingly the electrical conductivity can be improved effectively. The Seebeck coefficients of the co-doped samples have not been derogated strongly. The power factors are enhanced for the Bi (1.98-x) In 0.02 Na x Te 2.7 Se 0.3 (x = 0.02) within the whole testing temperature range. The Bi (1.98-x) In 0.02 Na x Te 2.7 Se 0.3 (x = 0.02) samples have the lower thermal conductivity due to reduction in lattice thermal conductivity, which leads to a great improvement in the thermoelectric figure of merit ZT. The highest ZT of the sample can reach 0.87 at 398 K.


2016 ◽  
Vol 17 (4) ◽  
pp. 570-574 ◽  
Author(s):  
I.V. Horichok ◽  
L.I. Nykyruy ◽  
M.O. Galushchak ◽  
S.I. Mudrij ◽  
T.O. Semko ◽  
...  

There are presents X-ray results and measurements of thermoelectric parameters (thermoelectric electromotive force α, specific electrical conductivity σ, and coefficient of thermal conductivity k) for materials on the base of PbTe-SnTe system. The dimensionless thermoelectric figure of merit ZT ≈ 0,3 received for thermoelectric samples p-Pb0.4Sn0.6Te obtained by cold pressing method in complex with annealing.


Author(s):  
А.А. Шабалдин ◽  
П.П. Константинов ◽  
Д.А. Курдюков ◽  
Л.Н. Лукьянова ◽  
А.Ю. Самунин ◽  
...  

AbstractNanocomposite thermoelectrics based on Bi_0.45Sb_1.55Te_2.985 solid solution of p -type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO_2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without the SiO_2 addition by almost 50% (at 300 K). When adding SiO_2, the efficiency decreases. The initial thermoelectric fabricated without nanostructuring, in which the maximal thermoelectric figure of merit ZT = 1 at 390 K, is most efficient at temperatures above 350 K.


2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2020 ◽  
Vol 53 (6) ◽  
pp. 1542-1549
Author(s):  
Yuichi Michiue ◽  
Hyoung-Won Son ◽  
Takao Mori

A unified structure model in (3 + 1)-dimensional superspace proved suitable for identification of a homologous phase (Ga1−αAlα)2O3(ZnO) m by the profile fitting of powder X-ray diffraction intensities for thermoelectric composite materials in the pseudoternary system ZnO–Al2O3–Ga2O3. A homologous compound of the phase parameter m ≃ 37 was found to coexist with (Al,Ga)-doped ZnO in samples sintered at 1723 K in air. The thermoelectric properties of the composite materials were closely related to the phase fractions. The higher the phase fraction of (Al,Ga)-doped ZnO with the wurtzite structure, the higher the electrical conductivity. On the other hand, the homologous compound with the long-period structure was effective in lowering the thermal conductivity of the materials.


2012 ◽  
Vol 519 ◽  
pp. 188-192 ◽  
Author(s):  
P.Z. Ying ◽  
H. Zhou ◽  
Y.L. Gao ◽  
Y.Y. Li ◽  
Y.P. Li ◽  
...  

Here we report the thermoelectric properties of a wide–gap chalcopyrite compound AgInSe2, and observed the remarkable improvement in electrical conductivity σ, due to the bandgap (Eg = 1.12 eV) reduction compared to In2Se3. The improvement in σ is directly responsible for the enhancement of thermoelectric figure of merit ZT, though the thermal conductivity is much higher at 500 ~ 724 K. The maximum ZT value is 0.34 at 724 K, increasing by a factor of 4, indicating that this chalcopyrite compound is of a potential thermoelectric candidate if further optimizations of chemical compositions and structure are made.


2018 ◽  
Vol 913 ◽  
pp. 811-817 ◽  
Author(s):  
Di Wu ◽  
Ji Ai Ning ◽  
De Gang Zhao ◽  
Xue Zhen Wang ◽  
Na Liu

In this study, nanometer WO3 powder was uniformly dispersed into the Cu2SnSe3 powder by ball milling process, and the WO3/Cu2SnSe3 thermoelectric composite was prepared by spark plasma sintering (SPS). The results showed that the nano-WO3 particles were mainly distributed in the grain boundary of Cu2SnSe3 matrix, and the grain growth of Cu2SnSe3 was inhibited. The addition of nano-WO3 could enhance the electrical conductivity of Cu2SnSe3, and while the Seebeck coefficient increased slightly for the 0.4% WO3/Cu2SnSe3 composite. The thermal conductivity was not decreased until the content of WO3 exceeded 1.6%. The highest thermoelectric figure of merit ZT of 0.177 was achieved at 700 K for 0.4% WO3/Cu2SnSe3 composite. The enhancement of ZT value of WO3/Cu2SnSe3 thermoelectric material was mainly attributed to the improvement of the electrical properties.


2016 ◽  
Vol 4 (9) ◽  
pp. 1871-1880 ◽  
Author(s):  
Gabin Guélou ◽  
Paz Vaqueiro ◽  
Jesús Prado-Gonjal ◽  
Tristan Barbier ◽  
Sylvie Hébert ◽  
...  

The thermoelectric figure of merit of TiS2 is increased by 25% through the intercalation of low levels of cobalt due to an increased electrical conductivity, arising from charge transfer, and a reduced thermal conductivity resulting from disorder.


Sign in / Sign up

Export Citation Format

Share Document