scholarly journals The Thermoelectric Properties of Silver Doped of Lead Telluride

2016 ◽  
Vol 17 (2) ◽  
pp. 188-192
Author(s):  
M. A. Lopyanko ◽  
S. I. Mudri ◽  
S. V. Optasyuk ◽  
T. O. Semko ◽  
Т. С. Люба ◽  
...  

The synthesis and study the structure and thermoelectric properties of silver doped of lead telluride with impurity concentration of 0.3, 0.5, 1.0 at.%. Established that in the samples PbTe: Ag with impurity concentration > 0.5 at. % Ag present phase pure lead, due to reaching the solubility of impurities. The influence of temperature of annealing on Seebeck coefficient, thermal conductivity and specific conductivity was identified.

Author(s):  
Chang'an Li ◽  
Xin Guan ◽  
Shizhong Yue ◽  
Xi Zu Wang ◽  
Jianmin Li ◽  
...  

Thermoelectric polymers have attracted great attention because of their unique merits including low thermal conductivity, low cost, non- or low toxicity and high mechanical flexibility. However, their thermoelectric properties particularly...


2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


2008 ◽  
Vol 368-372 ◽  
pp. 547-549
Author(s):  
Jun Jiang ◽  
Ya Li Li ◽  
Gao Jie Xu ◽  
Ping Cui ◽  
Li Dong Chen

In the present study, n-type (Bi2Se3)x(Bi2Te3)1-x crystals with various chemical compositions were fabricated by the zone melting method. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ), were measured in the temperature range of 300-500 K. The influence of the variations of Bi2Te3 and Bi2Se3 content on thermoelectric properties was studied. The increase of Bi2Se3 content (x) caused an increase in carrier concentration and thus an increase of σ and a decrease of α. The maximum figure of merit (ZT = α2σT/κ) of 0.87 was obtained at about 325 K for the composition of 93%Bi2Te3-7%Bi2Se3 with doping TeI4.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


2000 ◽  
Vol 626 ◽  
Author(s):  
Jun-ichi Tani ◽  
Hiroyasu Kido

ABSTRACTIn order to investigate the thermoelectric properties of Re-doped β-FeSi2 (Fe1-xRexSi2), Ir-doped β-FeSi2 (Fe1-xIrxSi2), and Pt-doped β-FeSi2 (Fe1-xPtxSi2), the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of these samples have been measured in the temperature range between 300 and 1150 K. Fe1-xRexSi2 is p-type, while Fe1-xIrxSi2 and Fe1-xPt xSi2 are n-type over the measured temperature range. The solubility limits of dopant are estimated to be 0.2at% for Fe1-xRexSi2, 0.5at% for Fe1-xIrxSi2, and 1.9at% for Fe1-xPtxSi2. A maximum ZT value of 0.14 was obtained for Fe1-xPt xSi2 (x=0.03) at the temperature 847 K.


2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


2013 ◽  
Vol 1490 ◽  
pp. 3-8 ◽  
Author(s):  
Dimas S. Alfaruq ◽  
James Eilertsen ◽  
Philipp Thiel ◽  
Myriam H Aguirre ◽  
Eugenio Otal ◽  
...  

AbstractThe thermoelectric properties of W-substituted CaMn1-xWxO3-δ (x = 0.01, 0.03; 0.05) samples, prepared by soft chemistry, were investigated from 300 K to 1000 K and compared to Nb-substituted CaMn0.98Nb0.02O3-δ. All compositions exhibit both an increase in absolute Seebeck coefficient and electrical resistivity with temperature. Moreover, compared to the Nb-substituted sample, the thermal conductivity of the W-substituted samples was strongly reduced. This reduction is attributed to the nearly two times greater mass of tungsten. Consequently, a ZT of 0.19 was found in CaMn0.97W0.03O3-δ at 1000 K, which was larger than ZT exhibited by the 2% Nb-doped sample.


2011 ◽  
Vol 695 ◽  
pp. 65-68 ◽  
Author(s):  
Kwan Ho Park ◽  
Il Ho Kim

Co4-xFexSb12-ySny skutterudites were synthesized by mechanical alloying and hot pressing, and thermoelectric properties were examined. The carrier concentration increased by doping and thereby the electrical conductivity increased compared with intrinsic CoSb3. Every specimen had a positive Seebeck coefficient. Fe doping caused a decrease in the Seebeck coefficient but it could be enhanced by Fe/Sn double doping possibly due to charge compensation. The thermal conductivity was desirably very low and this originated from ionized impurity-phonon scattering. Thermoelectric properties were improved remarkably by Fe/Sn doping, and a maximum figure of merit, ZT = 0.5 was obtained at 723 K in the Co3FeSb11.2Sn0.8 specimen.


2008 ◽  
Vol 1100 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Daryush Ila

AbstractMonolayer thin films of YbBiPt and YBiPt have been produced with 560 nm and 394 nm thick respectively in house and their thermoelectric properties were measured before and after MeV ion bombardment. The energy of the ions were selected such that the bombarding Si ions stop in the silicon substrate and deposit only electronic energy by ionization in the deposited thin film. The bombardment by 5.0 MeV Si ions at various fluences changed the homogeneity as well as reducing the internal stress in the films thus affecting the thermal, electrical and Seebeck coefficient of thin films. The stoichiometry of the thin films was determined using Rutherford Backscattering Spectrometry, the thickness has been measured using interferometry and the electrical conductivity was measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the measured figure of merit as a function of bombardment fluence.


Sign in / Sign up

Export Citation Format

Share Document