scholarly journals The Important Thermal and Kinetic Properties of Crystals and Their Calculations with the Use of the Gibbs Potentials

2019 ◽  
Vol 20 (2) ◽  
pp. 133-138
Author(s):  
Ya.S. Budzhak ◽  
A.O. Druzhinin ◽  
T.K. Waclawski

In this work, the important thermal and kinetic characteristics of crystals are calculated. It was shown that in a state of thermodynamic equilibrium, the thermal properties of crystals are additive, and their value for an entire crystal is calculated by summing the values of thermal properties of the crystal lattice and the properties of the gas of free charge carriers in a crystal. These properties are fully characterized by the appropriate Gibbs potentials. In this work it was also shown that when the electric field E and temperature gradient ΔrT are created in a crystal, and this crystal is placed in the magnetic field with the magnetic inductance vector B, then there the electric charge and heat transport processes begin to exist in the crystal. These processes are described by the generalized electric and heat conduction equations. The tensors and the scalar coefficients in these equations – these are the kinetic properties of the crystals. They describe the nature of their actual properties and they have widespread and pragmatic applications in modern solid-state electronics

2009 ◽  
Vol 23 (17) ◽  
pp. 3596-3601 ◽  
Author(s):  
LJUDMILA SHCHUROVA ◽  
VLADIMIR KULBACHINSKII

We have investigated the thermodynamic, transport and magnetotransport properties of free charge carriers in a diluted magnetic semiconductor with a quantum well In0.17Ga0.83As in GaAs with δ-doped by C and Mn. In order to determine the density of the holes in a quantum well, we carried out thermodynamic calculations of the system of free holes, atoms Mn0 and ions Mn-. We calculated the temperature dependence of resistance and magnetoresistance of holes in the quantum well. The contributions of various scattering mechanisms of holes to the resistance were analyzed. The negative magnetoresistance are explained as the reduction of spin-flip scattering by aligning spins of the magnetic field.


2021 ◽  
Author(s):  
Philippa Browning ◽  
Mykola Gordovskyy ◽  
Satashi Inoue ◽  
Eduard Kontar ◽  
Kanya Kusano ◽  
...  

<p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>


2019 ◽  
Vol 20 (4) ◽  
pp. 331-337
Author(s):  
Ya.S. Budzhak ◽  
А.A. Druzhinin ◽  
S.I. Nichkalo

It is shown that when a conductive crystal with electric field strength  and a temperature gradient  is placed in a magnetic field with an induction vector , processes of charge and heat carriers transport occur, and they can be described by known generalized electrical conduction and heat conduction equations. The tensors and scalar coefficients that make up these equations are the kinetic properties of crystals. They describe the nature of actual properties of crystals and have a wide pragmatic application in modern solid-state electronics. The process of spatial quantization of the spectrum and its influence on the kinetic properties of crystals is also analyzed.


2019 ◽  
Vol 632 ◽  
pp. A13 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
M. Weżgowiec ◽  
J. Irwin ◽  
R. Beck ◽  
...  

Context. The radio continuum halos of edge-on spiral galaxies have diverse morphologies, with different magnetic field properties and cosmic ray (CR) transport processes into the halo. Aims. Using the Continuum HAloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA) in two frequency bands, 6 GHz (C-band) and 1.5 GHz (L-band), we analyzed the radio properties, including polarization and the transport processes of the CR electrons (CREs), in the edge-on spiral galaxy NGC 4013. Supplementary LOw-Frequency ARray (LOFAR) data at 150 MHz are used to study the low-frequency properties of this galaxy and X-ray data are used to investigate the central region. Methods. We determined the total radio flux densities (central source, disk, halo and total) as well as the radio scale heights of the radio continuum emission at both CHANG-ES frequencies and at the LOFAR frequency. We derived the magnetic field orientation from CHANG-ES polarization data and rotation measure synthesis (RM synthesis). Furthermore, we used the revised equipartition formula to calculate the magnetic field strength. Lastly, we modeled the processes of CR transport into the halo with the 1D SPINNAKER model. Results. The central point source dominates the radio continuum emission with a mean of ∼35% of the total flux density emerging from the central source in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits, with halo scale heights of 1.2 kpc in C-band, 2.0 kpc in L-band, and 3.1 kpc at 150 MHz, better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint and contributes only 40% and 56% of the total flux density in C-band and L-band, respectively. This is less than in galaxies with wind-driven halos. While the SPINNAKER models of the radio profiles show that advection with a launching velocity of ∼20 km s−1 (increasing to ∼50 km s−1 at 4 kpc height) fits the data equally well or slightly better, diffusion is the dominating transport process up to heights of 1–2 kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6 μG is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6 kpc. Conclusions. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with SPINNAKER, and the low temperature of the X-ray emitting hot gas.


Author(s):  
D. Martínez ◽  
J. A. Reyes ◽  
G. Reyes ◽  
C. G. Avendaño

In this paper, we consider a clockwise rotating magnetic field around the [Formula: see text]-axis and charge carriers which impinge normally to the [Formula: see text] plane. We obtained analytically the spectrum of the momentum operator [Formula: see text] and found the existence of a band structure from which the movement of these charge carries is filtered according to the spatial period of the magnetic field or its intensity. Also we exhibit the existence of three band gaps (one total or primary and two partials) whose width depends on the system parameters.


1958 ◽  
Vol 36 (5) ◽  
pp. 527-538 ◽  
Author(s):  
Gaston Fischer ◽  
D. K. C. MacDonald

Magnetoresistance and Hall-effect measurements in InSb are described. This semiconductor has charge carriers with sufficiently long mean free paths, l, that it is possible, even at room temperature and with available magnetic fields, to obtain l/r values considerably greater than unity, r being the orbital radius of a charge carrier moving in the applied magnetic field. The classical two-band theory has been found to account rather well for the results up to the highest magnetic fields employed. A review of the underlying assumptions of this theory is presented, and simple formulae are derived which allow the concentrations and mobilities of both types of carriers to be calculated from the magnetic field dependence of the resistivity, ρH, and of the Hall-constant, AH. The parameter Λ ≡ [(AH−A0)/A0]/[(ρH−ρ0)/ρ0] provides a useful means to check the consistency of the theory and can give some indication of the variation of the mobilities with the magnetic field.


2014 ◽  
Vol 81 (2) ◽  
Author(s):  
K. C. Shaing

Superbanana and superbanana plateau transport processes are critical to plasma confinement in tokamaks with broken symmetry. The transport is caused by the superbanana resonance, which occurs at a pitch angle that makes the toroidal drift speed vanish, i.e. the tips of the superbananas. The physics consequences of the resonance on the symmetry breaking induced toroidal momentum damping and on the energetic alpha particle transport have been demonstrated using large aspect ratio expansion. Here, the existing theory for the superbanana and superbanana plateau transport is extended for finite aspect ratio tokamaks with broken symmetry. The effects of finite plasma β, and magnetic field shear are naturally included. Here, β is the ratio of the thermal plasma pressure to the magnetic field pressure. The explicit expressions for the transport fluxes in these regimes in terms of the equilibrium quantities are presented. It is shown that the main effects are to modify the resonance function G(k) and the expression for the pitch angle parameter k in the existing theory.


2021 ◽  
Author(s):  
Lina Hadid ◽  
Oleg Shebanits ◽  
Jan-Erik Wahlund ◽  
Michiko Morooka ◽  
Andrew Nagy ◽  
...  

<p>It is well known that in the magnetosphere of the outer planets (eg. Saturn, Jupiter, Neptune), even in the absence of an electric current, a polarization electric field develops as a consequence of charge separation in a plasma, providing a restoring force to maintain charge neutrality. It is also well established that certain regions of these planetary systems (ionosphere, icy moons, rings) are populated by significant amount of charged dust that play an important role in the physical and chemical processes in the surrounding plasma environment.<br>In the present work, we study the effect of the charged dust grains on the polarization electric field using Saturn’s F-ring region as a case study. We derive a general expression for E parallel to the magnetic field (E_para) and then using the Cassini RPWS/LP measurements we estimate for the first time in situ E_para close to Janus/Epimetheus ring during the F ring grazing orbits. We further demonstrate that the presence of charged dust,  as small as nanometers in size, can significantly influence the plasma transport processes, in particular the ambipolar diffusion along the magnetic field lines. We show that, close to the ring plane (Z <0.1 Rs), the dusty plasma amplifies E_para by at least one order of magnitude and reverses its direction. Such a reversal implies a confinement of the electrons above the equatorial plane. Furthermore, we show a clear correlation between the amplification of the ambipolar eletrostatic field and the ions and electrons number densities, that could be used in other dusty environments where in-situ measurements are not available yet (in our solar system or the interstellar medium).</p>


2009 ◽  
Vol 152-153 ◽  
pp. 283-286 ◽  
Author(s):  
V.A. Kulbachinskii ◽  
L. Shchurova

We have investigated the thermodynamic, transport and magnetotransport properties of free charge carriers in a diluted magnetic semiconductor with a quantum well InGaAs in the GaAs with δ-doped by C and Mn. In order to determine the density of the holes in a quantum well, we carried out thermodynamic calculations of the system of free holes, atoms Mn0 and ions Mn–. We calculated the temperature dependence of resistance and magnetoresistance of holes in the quantum well. The contributions of various scattering mechanisms of holes to the resistance were analyzed. The negative magnetoresistance are explained as the reduction of spin-flip scattering by aligning spins of the magnetic field.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3102-3105 ◽  
Author(s):  
Jan Koláček ◽  
Petr Vašek

The Hall voltage sign reversal is consistently explained by the model in which vortices with the superconducting and normal state charge carriers are regarded as three independent subsystems mutually connected by interactions. The equations of motion for these three subsystems are solved simultaneously and a new formula for the Hall resistivity is obtained. It is shown that by this model it is possible to explain qualitatively experimental data. Despite of the fact that the pinning forces have not been taken into account the formula qualitatively explains not only the double Hall voltage sign reversal observed in Bi and Tl based superconductors below the critical temperature but also the magnetic field dependence of the Hall conductivity.


Sign in / Sign up

Export Citation Format

Share Document