scholarly journals Investigation of the conditions of synthesis of metal and chalcopyrite films from the degradation products of electrodes of an overstressed nanosecond discharge in argon and air

2020 ◽  
Vol 21 (4) ◽  
pp. 669-679
Author(s):  
A.K. Shuaibov ◽  
A.I. Minya ◽  
R.V. Grytsak ◽  
A.A. Malinina ◽  
I.V. Shevera ◽  
...  

The characteristics of an overstressed bipolar discharge with a duration of 100-150 ns in argon and air, which was ignited between copper electrodes in argon, and also between an aluminum electrode and a chalcopyrite (CuInSe2) electrode in air, are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, the vapor of copper, aluminum, and vapor of ternary chalcopyrite are introduced into the interelectrode gap. This creates the prerequisites for the synthesis of thin copper films and the synthesis of films based on quaternary chalcopyrite - CuAlInSe2, which can be deposited on a quartz plate installed near the center of the discharge gap. The optical characteristics of the plasma, as well as voltage pulses across the discharge gap of d = 1–2 mm, current pulses, and pulsed energy contributions to the discharge, have been investigated using emission spectroscopy with a high time resolution. The plasma emission spectra were thoroughly studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper, and indium, which are formed in the discharge.

2021 ◽  
Vol 57 (5) ◽  
pp. 34-51
Author(s):  
A.K. Shuaibov ◽  
◽  
A.Y. Minya ◽  
A.A. Malinina ◽  
R.V Gritsak ◽  
...  

The characteristics and parameters of an overstressed high-current discharge with a duration of 100–150 ns in air, which was ignited between an aluminum electrode and a chalcopyrite electrode (CuInSe2), are presented. The air pressure was 13.3 and 101.3 kPa. In the process of microexplosions of inhomogeneities on the working surfaces of electrodes in a strong electric field, aluminum vapors and chalcopyrite vapors were introduced into the interelectrode gap, which creates the prerequisites for the synthesis of thin films based on quaternary chalcopyrite – CuAlInSe2. The films synthesized from the products of electrode destruction were deposited on a quartz plate at a distance of 2–3 cm from the center of the discharge gap. The current and voltage pulses across the discharge gap of d = 1 mm, as well as the pulse energy input into the discharge, were investigated. The plasma emission spectra were studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper and indium, which are formed in the discharge. The reference spectral lines of atoms and ions of aluminum, copper, and indium were established, which can be used to control the process of deposition of thin films of quaternary chalcopyrite. Thin films were synthesized from the degradation products of chalcopyrite molecules and aluminum vapors, which may have the composition of the quaternary chalcopyrite CuAlInSe2; the transmission spectra of the synthesized films in the spectral range of 200–800 nm were studied. By the method of numerical simulation of the plasma parameters of an overstressed nanosecond discharge based on aluminum and chalcopyrite vapors in air by solving the Boltzmann kinetic equation for the electron energy distribution function, the temperature and density of electrons, the specific power losses of the discharge for the main electronic processes and their rate constants depending on the value parameter E/N for plasma of vapor-gas mixtures based on air, aluminum vapor and ternary chalcopyrite were modulated.


The electrical and optical characteristics of the overstressed nanosecond discharge in nitrogen at a pressure of 202 kPa, which was ignited between electrodes from chalcopyrite (CuInSe2 ), are presented. Upon sputtering of chalcopyrite electrodes, CuInSe2 compound vapors have been introduced into the discharge plasma. Chalcopyrite molecules were partially destroyed in the plasma and partially deposited in the form of thin films on a quartz substrate, which was placed near the system of discharge electrodes. The main decomposition products of a chalcopyrite molecule in an overstressed nanosecond discharge were found, which were in excited and ionized states and which, in the plasma emission spectra, were mainly represented by atoms and singly charged copper and indium ions. The spectral lines of copper and indium are proposed, which can be used to control the deposition of thin films of chalcopyrite in real time. On quartz substrates, gas-discharge method was used to synthesize thin films based on the CuInSe2 compound, which effectively absorbed light in a wide spectral range (200-800 nm), which opens up prospects for their use in photovoltaic devices.


2020 ◽  
Vol 7 (2) ◽  
pp. 43-51
Author(s):  
A. Murmantsev ◽  
A. Veklich ◽  
V. Boretskij ◽  
M. Bartlová ◽  
L. Dostál ◽  
...  

This work deals with investigations of thermal plasma of electric arc discharge between sintered composite Cu-Cr electrodes, which can be used in electrical contacts of vacuum circuit breakers. Breaking arcs between composite Cu-Cr as well as single-component copper electrodes were used to study the electrical properties, plasma optical emission and electrodes surface modification behavior. In particular, the temporal evolution of plasma emission spectra of electric breaking arcs in air atmosphere was investigated by Optical Emission Spectroscopy (OES). Scanning Electron Microscopy (SEM) with Energy-dispersive X-ray Spectroscopy (EDXS) were applied to analyze the cross-section of working layer of electrodes surface modified by the heat flux from the discharge.


Author(s):  
Белогловский ◽  
Andrey Beloglovskiy ◽  
Федорова ◽  
A. Fedorova

A research of conditions of the branching of positive streamer in air in a strong electric field by the use a three-dimensional numerical model is presented. This model is based on the assumption that the development of large electron avalanches in the strong field in front of the streamer head leads to branching. Tendency for branching has been observed, if the ratio of the diameters of the streamer heads to the distance between them is not greater than 0.55. If this ratio is more than 0,55, merger of originally formed streamer heads has been observed, and then only one streamer develops in the discharge gap.


1996 ◽  
Vol 93 (2) ◽  
pp. 215-224 ◽  
Author(s):  
A. Vinogradov ◽  
M. Nadtochiy ◽  
S. Hashimoto ◽  
S. Miura

2015 ◽  
Vol 8 (3) ◽  
pp. 3001-3048 ◽  
Author(s):  
S. Fernandez ◽  
A. Murk ◽  
N. Kämpfer

Abstract. Stratospheric ozone is of major interest as it absorbs most of harmful UV radiation from the sun, allowing life on Earth. Ground based microwave remote sensing is the only method that allows to measure ozone profiles up to the mesopause, 24 h and under different weather conditions with high time resolution. In this paper a novel ground based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere, by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a preamplified heterodyne receiver, and a digital Fast Fourier Transform spectrometer for the spectral analysis. Among its main new features stands out the incorporation of different calibration loads, including a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen, therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station in Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS satellite data, ECMWF model data, as well as our nearby NDACC ozone radiometer measuring at Bern.


PalZ ◽  
2021 ◽  
Author(s):  
Klaus Wolkenstein ◽  
Gernot Arp

AbstractUV-light-induced fluorescence is widely used in the study of coal macerals and palynological samples, but to date has not been described in great detail for plant macrofossils. Here, we report the characteristics of bright UV-light-induced fluorescence of various fossil angiosperm leaf taxa from the Upper Pliocene of Willershausen, Lower Saxony, Germany. The fluorescence is exceptional, since different fluorescence colors ranging from green to yellow to red can be observed and fluorescence properties are found to be related to genera. Using confocal laser scanning microscopy, fluorescence was studied in detail and emission spectra were obtained that allowed to differentiate broad groups of fluorophores. Fluorescence emissions attributed to chlorophyll degradation products demonstrate that fluorescence can be used as an indicator for exceptional chemical preservation of leaf fossils. Comparison with present-day senescing plants suggests that the fluorescence differences in the fossil leaves are mainly caused by taxon-specific degeneration of organic compounds during senescence. The occurrence of various leaf taxa with different fluorescence properties, preserved under identical conditions of fossilization, indicate that diagenesis was not crucial for the differences in leaf fluorescence.


2019 ◽  
Vol 6 (2) ◽  
pp. 152-155
Author(s):  
A. Veklich ◽  
S. Fesenko ◽  
V. Boretskij

Composite materials on carbon-copper base have advanced electric and exploitation characteristics. They usually used as materials for sliding contacts for high-speed railway. Arc discharges appear during pantograph lowering process in pantograph-catenary system, so injection of contact material into discharge gap has place. Therefore, investigations of electric arc plasma between such composite electrodes can be useful for further optimization of materials. It would be very useful as well to examine the peculiarities of electric arc plasma and contacts’ working surface interaction. So, the aim of this work is spectroscopy investigations of electric arc discharge plasma between C-Cu composite electrodes. The mutual correlation of plasma properties and composition of contacts’ was found.


2021 ◽  
Vol 22 (4) ◽  
pp. 717-723
Author(s):  
O.K. Shuaibov ◽  
O.Y. Minya ◽  
R.V. Hrytsak ◽  
A.O. Malinina ◽  
M.I. Vatrala

The spectroscopic characteristics of a bipolar, overstressed discharge of nanosecond duration between zinc electrodes in oxygen at a pressure p(O2) = 13.3 kPa are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, zinc vapor is introduced into the discharge gap. This creates the prerequisites for the formation of zinc oxide molecules and clusters in the plasma and the synthesis of thin island zinc oxide films, which can be deposited on a dielectric substrate installed near the center of the discharge gap. The spectral characteristics of the discharge were investigated from the central part of the discharge gap 2 mm in size. The main excited components of the plasma of a vapor-gas mixture based on zinc and oxygen were established at high values ​​of the parameter E / N (where E is the electric field strength; N is the total concentration of particles in the plasma), which, when deposited outside the discharge plasma, can lead to the formation of fine nanostructured films based on zinc oxide.


2014 ◽  
Vol 29 (12) ◽  
pp. 2256-2261 ◽  
Author(s):  
Zdeněk Weiss ◽  
Edward B. M. Steers ◽  
Juliet C. Pickering ◽  
Volker Hoffmann ◽  
Sohail Mushtaq

Transition rate diagrams of copper ions in argon and neon glow discharges are presented, using data from Cu ii emission spectra.


Sign in / Sign up

Export Citation Format

Share Document