scholarly journals Characteristics and Parameters of Overstressed Nanosecond Discharge Plasma in Air between an Electrode from Aluminum and Electrode from Chalcopyrite (CuInSe2)

2021 ◽  
Vol 57 (5) ◽  
pp. 34-51
Author(s):  
A.K. Shuaibov ◽  
◽  
A.Y. Minya ◽  
A.A. Malinina ◽  
R.V Gritsak ◽  
...  

The characteristics and parameters of an overstressed high-current discharge with a duration of 100–150 ns in air, which was ignited between an aluminum electrode and a chalcopyrite electrode (CuInSe2), are presented. The air pressure was 13.3 and 101.3 kPa. In the process of microexplosions of inhomogeneities on the working surfaces of electrodes in a strong electric field, aluminum vapors and chalcopyrite vapors were introduced into the interelectrode gap, which creates the prerequisites for the synthesis of thin films based on quaternary chalcopyrite – CuAlInSe2. The films synthesized from the products of electrode destruction were deposited on a quartz plate at a distance of 2–3 cm from the center of the discharge gap. The current and voltage pulses across the discharge gap of d = 1 mm, as well as the pulse energy input into the discharge, were investigated. The plasma emission spectra were studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper and indium, which are formed in the discharge. The reference spectral lines of atoms and ions of aluminum, copper, and indium were established, which can be used to control the process of deposition of thin films of quaternary chalcopyrite. Thin films were synthesized from the degradation products of chalcopyrite molecules and aluminum vapors, which may have the composition of the quaternary chalcopyrite CuAlInSe2; the transmission spectra of the synthesized films in the spectral range of 200–800 nm were studied. By the method of numerical simulation of the plasma parameters of an overstressed nanosecond discharge based on aluminum and chalcopyrite vapors in air by solving the Boltzmann kinetic equation for the electron energy distribution function, the temperature and density of electrons, the specific power losses of the discharge for the main electronic processes and their rate constants depending on the value parameter E/N for plasma of vapor-gas mixtures based on air, aluminum vapor and ternary chalcopyrite were modulated.

2020 ◽  
Vol 21 (4) ◽  
pp. 669-679
Author(s):  
A.K. Shuaibov ◽  
A.I. Minya ◽  
R.V. Grytsak ◽  
A.A. Malinina ◽  
I.V. Shevera ◽  
...  

The characteristics of an overstressed bipolar discharge with a duration of 100-150 ns in argon and air, which was ignited between copper electrodes in argon, and also between an aluminum electrode and a chalcopyrite (CuInSe2) electrode in air, are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, the vapor of copper, aluminum, and vapor of ternary chalcopyrite are introduced into the interelectrode gap. This creates the prerequisites for the synthesis of thin copper films and the synthesis of films based on quaternary chalcopyrite - CuAlInSe2, which can be deposited on a quartz plate installed near the center of the discharge gap. The optical characteristics of the plasma, as well as voltage pulses across the discharge gap of d = 1–2 mm, current pulses, and pulsed energy contributions to the discharge, have been investigated using emission spectroscopy with a high time resolution. The plasma emission spectra were thoroughly studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper, and indium, which are formed in the discharge.


The electrical and optical characteristics of the overstressed nanosecond discharge in nitrogen at a pressure of 202 kPa, which was ignited between electrodes from chalcopyrite (CuInSe2 ), are presented. Upon sputtering of chalcopyrite electrodes, CuInSe2 compound vapors have been introduced into the discharge plasma. Chalcopyrite molecules were partially destroyed in the plasma and partially deposited in the form of thin films on a quartz substrate, which was placed near the system of discharge electrodes. The main decomposition products of a chalcopyrite molecule in an overstressed nanosecond discharge were found, which were in excited and ionized states and which, in the plasma emission spectra, were mainly represented by atoms and singly charged copper and indium ions. The spectral lines of copper and indium are proposed, which can be used to control the deposition of thin films of chalcopyrite in real time. On quartz substrates, gas-discharge method was used to synthesize thin films based on the CuInSe2 compound, which effectively absorbed light in a wide spectral range (200-800 nm), which opens up prospects for their use in photovoltaic devices.


1992 ◽  
Vol 56 (3) ◽  
pp. 281-286
Author(s):  
Ya. F. Volkov ◽  
V. V. Marinin ◽  
N. I. Mitina ◽  
M. A. Tiarov ◽  
S. A. Trubchaninov

2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


2021 ◽  
pp. 38-42
Author(s):  
Boris A. Lapshinov ◽  
Nikolay I. Timchenko

The spatial characteristics of the erosion laser plasma are investigated. The application of small-sized spectrometers of the visible and ultraviolet ranges for recording the spectrum of plasma radiation is considered. Erosive laser plasma is formed on the surface of a silicon target under the action of pulsed laser radiation with a wavelength of 1064 nm under normal atmospheric conditions. The laser plasma torch was scanned using a movable slit diaphragm oriented parallel to the target surface. The emission of erosion laser plasma was recorded using small-size spectrometers. Based on the obtained plasma emission spectra, the dependences of the intensity of the spectral lines of silicon on the geometric position of the slit diaphragm are revealed. A comparison is made of the intensities of the spectral lines of silicon on the polished and grinded sides of the target.


2015 ◽  
Vol 230 ◽  
pp. 153-159 ◽  
Author(s):  
Oksana Chukova ◽  
Sergiy G. Nedilko ◽  
Sergiy A. Nedilko ◽  
Tetiana Voitenko ◽  
Olga Gomenyuk ◽  
...  

The La1‑xEuxVO4 powders were synthesized by co-precipitation method. Emission spectra of the LaEuVO4 and La1‑xEuxVO4 powders consist of wide non-structural bands of the matrix emission and narrow spectral lines caused by inner f-f electron transitions in the Eu3+ ions, respectively. The both types of emission were studied within 8 – 300 K temperature range. Decomposition of spectra of the wide matrix emission on three bands has been carried out and temperature dependencies for each band were studied. Temperature behavior of the Eu3+ emission was investigated for lines assigned to different Eu3+ centres. Obtained dependencies are analyzed and discussed using proposed schemes of transitions in the VO43- groups and structure of the nearest surrounding of the Eu3+ emission centres.


2021 ◽  
pp. 78-83
Author(s):  
E.I. Skibenko ◽  
A.N. Ozerov ◽  
I.V. Buravilov ◽  
V.B. Yuferov

The paper is concerned with the plasma-filled diode performance in the intensive mode regulated by means of external gas puffing. The possibility to smoothly vary the plasma parameters in the discharge gap zone, and thus, to optimize the main diode characteristics (Ucutoff, Icutoff) by the external gas puffing method has been confirmed by experiment. The introduction of additional quantity of neutral gas into the discharge causes the change in the plasma density balance due to elementary processes in physics of electronic and atomic collisions, such as ionization, dissociation, recombination. The deviation of actual voltage/current values from their maximum values can be attributed to the mismatch in the generator-load feed circuit.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 149-153
Author(s):  
Maryna S. Ladygina ◽  
Elzbieta Skladnik-Sadowska ◽  
Dobromil R. Zaloga ◽  
Marek J. Sadowski ◽  
Monika Kubkowska ◽  
...  

Abstract This paper presents results of experimental studies of tungsten samples of 99.95% purity, which were irradiated by intense plasma-ion streams. The behaviour of tungsten, and particularly its structural change induced by high plasma loads, is of great importance for fusion technology. The reported measurements were performed within a modified PF-1000U plasma-focus facility operated at the IFPiLM in Warsaw, Poland. The working gas was pure deuterium. In order to determine the main plasma parameters and to study the behaviour of impurities at different instants of the plasma discharge, the optical emission spectroscopy was used. The dependence of plasma parameters on the initial charging voltage (16, 19 and 21 kV) was studied. Detailed optical measurements were performed during interactions of a plasma stream with the tungsten samples placed at the z-axis of the facility, at a distance of 6 cm from the electrode outlets. The recorded spectra showed distinct WI and WII spectral lines. Investigation of a target surface morphology, after its irradiation by intense plasma streams, was performed by means of an optical microscope. The observations revealed that some amounts of the electrodes material (mainly copper) were deposited upon the irradiated sample surface. In all the cases, melted zones were observed upon the irradiated target surface, and in experiments performed at the highest charging voltage there were formed some cracks.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2147
Author(s):  
Žiga Gosar ◽  
Janez Kovač ◽  
Denis Đonlagić ◽  
Simon Pevec ◽  
Gregor Primc ◽  
...  

An extremely asymmetric low-pressure discharge was used to study the composition of thin films prepared by PECVD using HMDSO as a precursor. The metallic chamber was grounded, while the powered electrode was connected to an RF generator. The ratio between the surface area of the powered and grounded electrode was about 0.03. Plasma and thin films were characterised by optical spectroscopy and XPS depth profiling, respectively. Dense luminous plasma expanded about 1 cm from the powered electrode while a visually uniform diffusing plasma of low luminosity occupied the entire volume of the discharge chamber. Experiments were performed at HMDSO partial pressure of 10 Pa and various oxygen partial pressures. At low discharge power and small oxygen concentration, a rather uniform film was deposited at different treatment times up to a minute. In these conditions, the film composition depended on both parameters. At high powers and oxygen partial pressures, the films exhibited rather unusual behaviour since the depletion of carbon was observed at prolonged deposition times. The results were explained by spontaneous changing of plasma parameters, which was in turn explained by the formation of dust in the gas phase and corresponding interaction of plasma radicals with dust particles.


Sign in / Sign up

Export Citation Format

Share Document