Water-jet assisted laser cutting of Korean pine (Pinus koraiensis): Process and parameters optimization

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2540-2549
Author(s):  
Ting Jiang ◽  
Chunmei Yang ◽  
Yueqiang Yu ◽  
Yuexuan Lou ◽  
Jiuqing Liu ◽  
...  

In order to improve the processing quality of wood parts, an orthogonal experimental design of five factors and four levels was adopted, and a water-jet assisted laser cutting experiment on Korean pine (Pinus koraiensis) was conducted. Moreover, by using range analysis, the influences of the defocusing amount, cutting speed, laser power, water pressure, and water jet angle on the processing quality of Korean pine parts were evaluated, and the optimum process parameters were determined. The test results show that when the defocusing amount was -1 mm, water jet angle was 30°, laser power was 48 W, water pressure was 1.0 MPa, and cutting speed was 25 mm/s, the best processing quality of Korean pine parts was obtained.

2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2020 ◽  
Vol 10 (4) ◽  
pp. 6062-6067
Author(s):  
A. Boudjemline ◽  
M. Boujelbene ◽  
E. Bayraktar

This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


Circuit World ◽  
2014 ◽  
Vol 40 (3) ◽  
pp. 85-91
Author(s):  
Shouxu Wang ◽  
Li Feng ◽  
Yuanming Chen ◽  
Wei He ◽  
Zhihua Tao ◽  
...  

Purpose – The purpose of this paper is to form good cutting qualities in glass-epoxy material for opening flexible areas of rigid-flex printed circuit boards (PCB) by ultraviolet (UV) laser cutting. Design/methodology/approach – The cut width and cut depth of glass-epoxy materials were both observed to evaluate their cutting qualities. The heat affected zone (HAZ) of the glass-epoxy material was also investigated after UV laser cutting. The relationships between the cut width and the parameters of various factors were analyzed using an orthogonal experimental design. Findings – The cut width of the glass-epoxy material gradually increased with the increment of the laser power and Z-axis height, while cutting speed and laser frequency had less effect on the cut width. Optimal parameters of the UV laser process for cutting glass-epoxy material were obtained and included a laser power of 6W, a cutting speed of 170 mm/s, a laser frequency of 50 kHz and a Z-axis height of 0.6 mm, resulting in an average cut width of 25 μm and small HAZ. Originality/value – Flexible areas of rigid-flex PCBs are in good agreement with the cutting qualities of the UV laser. The use of a UV laser process could have important potential for cutting glass-epoxy materials used in the PCB industry.


2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


Author(s):  
Lyubomir Lazov ◽  
Hristina Deneva ◽  
Erika Teirumnieka

Two types of electrical sheet steel M250-35A and M530-50A were used to cut by melting with a TruLaser 1030 technological system. It was observed that pressure of auxiliary gas had a major effect on kerf width b and cut angle deviation α. Nitrogen as an assisted gas has been taken. The basic parameters as laser power, cutting speed, focus position were constantly supported and the pressure was changed from 4 bar to 20 bar by step 2 bar. As well as the experimental results of gas pressure on entrance and exit kerf widths, have been analyzed and discussed in this study.


2012 ◽  
Vol 503-504 ◽  
pp. 367-369
Author(s):  
Geng Wu Liu

Silicon steel plate is main material of motor and transformer , and was always used die for its production . Through water cutting test , the cutting speed of beeline and arc and water pressure was adjusted , the water cutting technology was mastered . The quality of production such as dimension , burr height was controlled well . The cut area was not rust because of using dry technology and the magnetic conductivity was not affected using water cutting . It will provides a speediness way for silicon steel plate production .


Author(s):  
Miloš Madić ◽  
Mohamed H Gadallah ◽  
Dušan Petković

For an efficient use of laser cutting technology, it is of great importance to analyze the impact of process parameters on different performance indicators, such as cut quality criteria, productivity criteria, costs as well as environmental performance criteria (energy and resource efficiency). Having this in mind, this study presents the experimental results of CO2 laser fusion cutting of AISI 304 stainless steel using nitrogen, with the aim of developing a semi-empirical mathematical model for the estimation of process efficiency as an important indicator of the achievable energy transfer efficiency in the cutting process. The model was developed by relating the theoretical power needed to melt the volume per unit time and used laser power, where the change of kerf width was modeled using an empirical power model in terms of laser cutting parameters such as laser power, cutting speed, and focus position. The obtained results indicated the dominant effect of the focus position on the change in process efficiency, followed by the cutting speed and laser power. In addition, in order to maximize process efficiency and simultaneously ensure high cut quality without dross formation, a laser cutting optimization problem with constraints was formulated and solved. Also, a multi-objective optimization problem aimed at simultaneous optimization of process efficiency and material removal rate was formulated and solved, where the determined set of Pareto non-dominated solutions was analyzed by using the entropy method and multi-criteria decision analysis method, that is, the Technique for Order of Preference by Similarity to Ideal Solution. The optimization results revealed that in order to enhance process efficiency and material removal rate, while ensuring high cut quality without dross formation, focusing the laser beam deep into the bulk of material is needed with particular trade-offs between laser power and cutting speed levels at high pressure levels of nitrogen.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hitoshi Ozaki ◽  
Yosuke Koike ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki

Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850160
Author(s):  
ZENGLIANG HU ◽  
XUEYE CHEN ◽  
YI REN

The paper demonstrates four different polymer substrate microchannels are fabricated by CO2 laser machine. The four different polymer substrates are Polymethyl-methacrylate (PMMA), Polycarbonate (PC), Polystyrene (PS) and Polyethylene Terephthalate (PET), respectively. A number of microchannels are obtained and all roughness is measured. The four different polymer substrate microchannels are processed with different processing parameters. Laser power is set from 4[Formula: see text]W to 32[Formula: see text]W and laser cutting speed is set from 5[Formula: see text]mm/s to 30[Formula: see text]mm/s. The results show the roughness of PS substrate microchannel is lower than that of other three polymer substrate microchannels at the same parameters. When laser power is below 4[Formula: see text]W, the roughness of four polymer substrates are similar. The roughness of different polymer substrate microchannels decreases with the increase of laser power. The roughness of different polymer substrate microchannels also happens to change with increase of laser cutting speed.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Abdul Fattah Mohamad Tahir ◽  
Ahmad Razelan Rashid

Development of new material known as Ultra High Strength Steel (UHSS) able to improve the vehicle mass thus reflecting better fuel consumption. Transformation into high strength steel has been a significant drawback in trimming the UHSS into its final shape thus laser cutting process appeared to be the solution. This study emphasizes the relationship between Carbon Dioxide (CO2) laser cutting input parameters on 22MnB5 boron steel focusing on the kerf width formation and Heat Affected Zone (HAZ). Experimental research with variation of laser power, cutting speed and assisted gas pressure were executed to evaluate the responses. Metrological and metallographic evaluation of the responses were made on the outputs that are the kerf width formation and HAZ.  Positive correlation for power and negative interaction for cutting speed were found as the major factors on formation of the kerf. For the HAZ formation, thicker HAZ were formed as bigger laser power were applied to the material. Cutting speed and gas pressure does not greatly influence the HAZ formation for 22MnB5 boron steel.


Sign in / Sign up

Export Citation Format

Share Document