scholarly journals Enhanced toughness of reed (Phragmites australis) stalk with polyethylene glycol

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7127-7142
Author(s):  
Xue Zhao ◽  
Mingjie Wang ◽  
Kai Shang ◽  
Yao Chen ◽  
Jianmin Gao

Reed (Phragmites australis) is a cosmopolitan grass that is often the dominant species in the ecosystems it inhabits. It is widely used in furniture decoration as reed weaving products. However, the application of reed is limited due to its brittle nature and susceptibility to cracks. To increase the toughness of reed stalk, sodium chlorite (NaClO2) was used to remove the lignin from reed stalk, and then polyethylene glycol with different molecular weights (PEG 600, PEG 1000, PEG 2000, and PEG 4000) was used as a plasticizer. The micromorphology, crystal structure, and surface chemical composition of the modified reed stalk were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The bending strength and dynamic thermomechanical analysis (DMA) of the reed stalk were evaluated. The results showed that the delignified reed stalks plasticized with PEG 1000 or PEG 2000 showed better dimensional stability and toughness, and the smallest elastic modulus (133.268 MPa) was obtained when the samples were treated with PEG 2000. The results of thickness swelling showed that the dimensional stability increased after PEG modification. This research may provide the theoretical basis for the modification of reed stalk.

Author(s):  
Rana Obaidat ◽  
Bashar Al-taani ◽  
Hanan Al-quraan

Objective: Meloxicam is classified as class II corresponding to its high permeability and low solubility (12μg/ml). This study aims to compare the effect of selected polymers on stabilization of amorphous form, and dissolution of meloxicam by preparation of different solid dispersions using selected polymers (chitosan oligomers, polyvinylpyrrolidone K30, and polyethylene glycols).Methods: These solid dispersions were prepared using two different methods; solvent evaporation method for the two molecular weights chitosan carriers (16 and 11KDa) and polyvinylpyrrolidone-K30 and melting method for the two different molecular weights polyethylene glycol (4000 and 6000). The physicochemical properties of solid dispersions were analyzed using differential scanning calorimetry, Fourier transform infra-red analysis, Powder X-ray diffraction, and scanning electron microscopy. Selected dispersions were then compared to two selected marketed drugs (Mobic® and Moven®).Results: Best dissolution rates were obtained for both polyvinylpyrrolidone-K30 and polyethylene glycol 6000, followed by chitosan 16 kDa, chitosan 11 kDa, and polyethylene glycol 4000. Increasing polymeric ratio increased dissolution rate except for chitosan. Precipitation of the drug as amorphous form occurred in chitosan and polyvinylpyrrolidone-K30 dispersions, while no change in crystallinity obtained for polyethylene glycol dispersions. Failure of polyvinylpyrrolidone-K30 in the maintenance of stability during storage time was observed while re-crystallization occurred in chitosan-based dispersions, which ends with preferences to polyethylene glycol dispersions. After comparing the release of selected dispersions with the two selected polymers; all dispersions got a higher release than that of the two marketed drugs release.Conclusion: The dissolution profile of meloxicam has been increased successfully in a reproducible manner.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Umair Qasim ◽  
Zulfiqar Ali ◽  
Muhammad Shahid Nazir ◽  
Sadaf Ul Hassan ◽  
Sikander Rafiq ◽  
...  

Environmental concerns due to excessive use of synthetic or petroleum-based materials have encouraged scientists to develop novel, sustainable, and multifunctional material using abundant lignocellulosic biomass. In this work, a study was conducted on the isolation of cellulose from wheat straw using two different methods: acidified sodium chlorite and alkaline hydrogen peroxide. A comparative study was carried out based on the yield and properties of extracted cellulose. The final product (after treatments) was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) for the identification of properties. Both the treatments isolated pure white color cellulose. However, the yield of cellulose isolated through acidified sodium chlorite treatment (81.4%) was higher than alkaline hydrogen peroxide treatment (79%). Moreover, no huge difference was observed in the crystallinity and thermal properties of extracted cellulose.


Holzforschung ◽  
2016 ◽  
Vol 70 (10) ◽  
pp. 919-926 ◽  
Author(s):  
Youming Dong ◽  
Kaili Wang ◽  
Yutao Yan ◽  
Shifeng Zhang ◽  
Jianzhang Li

Abstract Polyethylene glycol (PEG) treatment is an effective approach to endow wood with higher dimensional stability (DS), which is still a concern under humid conditions. In this study, poplar wood was first treated with methacryloyl chloride to introduce methacryl groups in the cell wall. Then functional PEG served as modifier, and copolymerization was conducted in the second step to prepare PEG-diacrylate (PEGDA) modified samples. The resultant wood polymer composites (WPCs) were characterized by solid state NMR, field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The physical and mechanical properties of the WPCs were also evaluated, such as anti-swelling efficiency (ASE), water uptake, dynamic hydrophilicity (contact angles), and thermal stability. The results show that the copolymerized WPC achieved 51.4% ASE with leaching <3.0%. Moreover, the surface hardness and water resistance of the wood are also greatly improved.


2008 ◽  
Vol 8 (4) ◽  
pp. 1700-1706 ◽  
Author(s):  
Jin-Ho Park ◽  
Jin-Hoe Kim ◽  
Jin-Woo Park ◽  
Jin-Hae Chang ◽  
Chang-Sik Ha

We prepared transparent polyimide (PI) and organo-modified montmorillonite (OMMT) nanocomposite films from the solution of poly(amic acid) and various amounts (0.5–2 wt%) of OMMT in N,N-dimethylacetamide (DMAc). The Poly(amic acid) was prepared from the reaction of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis (trifluoromethyl)-4,4′-diamino phenyl (TFDB). Dodecylamine (C12-) and dodecyltriphenylphosphonium chloride (C12PPh-Cl–) were used as organic modifiers in OMMT. The PI/OMMT nanocomposite films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-Vis transmission spectra, thermomechanical analysis (TMA), and rheometric dynamic analysis (RDA). As the OMMT contents is increased, PI/OMMT nanocomposites generally show better properties compared to pristine PI films, although the transparency of the PI/OMMT nanocomposite films is sacrificed slightly. However, it is concluded that these nanocomposite films are good candidates for potential flexible substrates.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhendong Shi ◽  
Zhen Zheng ◽  
Xiaoli Su ◽  
Xinling Wang

AbstractA series of poly(vinylidene fluoride)s (PVDFs) is synthesized in supercritical carbon dioxide (sc-CO2). The influences of polymerization pressure, molecular weight distribution and H-H defect concentration on the crystallization of PVDF have been studied in combination with differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXRD) and Fourier transform infrared spectroscopy (FT-IR) measurements. The result shows that the morphology, molecular weights, polydispersity and head-to-head (H-H) defect concentrations of the PVDFs are affected by the reaction pressure and good solubility generated from sc-CO2. Especially, the sc-CO2 polymerization has greatly improved the crystallization mode of the obtained PVDFs such as the complete degree of crystallinity, crystallinity and the crystal phase. This will create more comprehensive application fields for PVDF.


2011 ◽  
Vol 415-417 ◽  
pp. 390-394
Author(s):  
Shao Hui Wang

A new Modifier with Silicon radicals as anchoring group and poly(butyl acrylate) as solvatable chain was synthesized and its effect on the properties of HDPE/Anhydrite composites was investigated in this paper. Fourier transmission infrared spectroscopy (FT-IR) results show that the modifier react on the Anhydrite powder particles surface and the modified Anhydrite powder particles particles. compared with that of HDPE/Anhydrite (filled with same non-modified fraction), The impact strength, tensile strength, bending strength and Young’s modulus of modified HDPE/Anhydrite composites increased about 36.6%, 7.5%, 15.6% and 34% respectively. Based on surface analysis by scanning electron microscope (SEM), the Anhydrite powder particles buried well in HDPE matrix when Anhydrite powder particles was coated with the YB modifier. It was found that Anhydrite powder particles significantly increased the crystallization temperature and crystallization rate of HDPE by differential scanning calorimetry (DSC). At same time, through the X-ray diffraction (XRD) found the addition of the YB modifier modified Anhydrite powder particles can not change the formation of crystal HDPE, but can reduce the crystallite size.


2021 ◽  
Vol 16 ◽  
pp. 1-10
Author(s):  
Norzita Yacob

Sago starch is a seasonal based plantation and widely found in Asia country. Its application mainly in cooking such as biscuits and as a thickener in jellies. To further utilize its application, bioplastic from sago starch was developed. In this study, sago starch films were prepared through a blending and casting method using polyethylene glycol (PEG) as a plasticizer by varying its molecular weights and concentrations. The interaction between starch and PEG in the blend was studied using FTIR technique. The effect on transparency, tensile stress, Young’s modulus as well as elongation percentages of the films was also examined. The results suggested that the addition of low molecular weight PEG (400 g.mol-1) increased the tensile stress of sago films from 33.51 MPa up to 39.11 MPa. Nevertheless, incorporation of high molecular weight of PEG (4000 g.mol-1) decreased the tensile strength of the film. Tensile strength and elongation at break of sago films increased with increasing of PEG concentration up to 2% and decreased with further increased of PEG content. Results indicated that there was a miscibility between these two components.


2014 ◽  
Vol 17 (51) ◽  
Author(s):  
Seveny Nuzully ◽  
Takeshi Kato ◽  
Edi Suharyadi

Nanopartikel magnetit (Fe3O4) telah berhasil disintesis menggunakan metode kopresipitasi dengan penambahan Polyethylene Glycol (PEG-4000) sebagai coating. Distribusi ukuran partikel dan sifat magnetik dari nanopartikel ini diteliti berdasarkan perbandingan massa Fe3O4 dan PEG, yaitu 1:1, 2:1, 3:1, 4:1, 1:2, dan 1:3. Distribusi ukuran partikel dikarakteristik dengan Transmission Electron Microscopy (TEM) sedangkan pengujian awal untuk mengetahui struktur kristal yang terkandung dalam sampel hasil sintesis dikarakteristik dengan X-Ray Diffraction (XRD), kemudian untuk mengetahui keberhasilan coating PEG dapat dikarakterisasi dengan menggunakan Fourier Transform Infra Red (FTIR) serta sifat magnetiknya dapat dikarakterisasi menggunakan Vibrating Sample Magnetometer (VSM). Sampel 1:1, 2:1, 3:1, 4:1, 1:2, 1:3 berturut-turut meiliki nilai Ms 37,2; 49,7; 55,2; 61,7; 27,7; 33,7 dan nilai Mr 4,8; 6,4; 6,6; 8,0; 3,3; 4,7. Hasil karakterisasi menunjukkan bahwa penambahan konsentrasi PEG mengakibatkan nilai saturation magnetic (Ms) dan remanence magnetic (Mr) turun, kecuali pada sampel dengan perbandingan 1:3.


2014 ◽  
Vol 17 (51) ◽  
Author(s):  
Seveny Nuzully ◽  
Takeshi Kato ◽  
Edi Suharyadi

Nanopartikel magnetit (Fe3O4) telah berhasil disintesis menggunakan metode kopresipitasi dengan penambahan Polyethylene Glycol (PEG-4000) sebagai coating. Distribusi ukuran partikel dan sifat magnetik dari nanopartikel ini diteliti berdasarkan perbandingan massa Fe3O4 dan PEG, yaitu 1:1, 2:1, 3:1, 4:1, 1:2, dan 1:3. Distribusi ukuran partikel dikarakteristik dengan Transmission Electron Microscopy (TEM) sedangkan pengujian awal untuk mengetahui struktur kristal yang terkandung dalam sampel hasil sintesis dikarakteristik dengan X-Ray Diffraction (XRD), kemudian untuk mengetahui keberhasilan coating PEG dapat dikarakterisasi dengan menggunakan Fourier Transform Infra Red (FTIR) serta sifat magnetiknya dapat dikarakterisasi menggunakan Vibrating Sample Magnetometer (VSM). Sampel 1:1, 2:1, 3:1, 4:1, 1:2, 1:3 berturut-turut meiliki nilai Ms 37,2; 49,7; 55,2; 61,7; 27,7; 33,7 dan nilai Mr 4,8; 6,4; 6,6; 8,0; 3,3; 4,7. Hasil karakterisasi menunjukkan bahwa penambahan konsentrasi PEG mengakibatkan nilai saturation magnetic (Ms) dan remanence magnetic (Mr) turun, kecuali pada sampel dengan perbandingan 1:3.


2012 ◽  
Vol 476-478 ◽  
pp. 2067-2070 ◽  
Author(s):  
Zhao Zhang ◽  
Guo Dong Fan ◽  
Hai Yan Yang

Poly(lactic acid)(PLA)was end-capped by isophorone diisocyanate(IPDI) to get PLA-IPDI under the condition of temperature of 176°C and pressure of 0.090 MPa for 13 mins, and then the PLA-IPDI was chain-extended with different molecular weights polyethylene glycol (PEG)-400, PEG-600, PEG-800, PEG-4000 and PEG-6000 to produce a series of block copolymer PLA-IPDI-PEGs. when n(–OH)/n(–NCO)=1.5:1, the molecular weight of PLA-IPDI is maximum. All the copolymer PLA-IPDI-PEGs were characterized by GPC, FTIR, DSC and contact angle testing. The results show that the polymeric degree of PLA-IPDI-PEG-800 is the best and its molecular weight is the biggest. Tg of PLA-IPDI-PEG-800 is the lowest and its hydrophilicity is better than the others modification PLA-IPD-PEGs and pure PLA.


Sign in / Sign up

Export Citation Format

Share Document