scholarly journals Preparation and characterization of self-reinforced paper using NaOH/thiourea aqueous solution at room temperature

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8191-8201
Author(s):  
Fuqiang Hu ◽  
Yucheng Hu ◽  
Lingling Zhang ◽  
Meixue Gan ◽  
Shangjun Liu ◽  
...  

The aim of this paper was to enhance paper strength in NaOH/thiourea aqueous solution at room temperature. Paper from cotton pulp was saturated with room temperature NaOH/thiourea aqueous solution and placed at a fixed temperature (8, 15, and 20 °C) for a period of time (1 h, 2 h, 4 h, and 6 h). The morphology, X-ray diffraction (XRD), mechanical properties, and density of paper were characterized. The results indicated the paper was self-reinforced. Scanning electron microscopy (SEM) photographs indicated that the structure of the treated papers was increasingly compact with decreasing temperature. The XRD results showed that the crystallinity degree of the paper decreased from 80.0% to 60.0%. The stress at break of the treated papers increased by more than fivefold. The wet tensile strength of the treated papers increased remarkably.

2013 ◽  
Vol 203-204 ◽  
pp. 212-215 ◽  
Author(s):  
Bożena Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Szklarska ◽  
Wojciech Simka ◽  
Marta Łężniak ◽  
...  

The chitosan (CH) coatings on a Ti13Zr13Nb alloy substrate were obtained by electrophoretic deposition (EPD). The EPD yield was investigated under different deposition conditions. The microstructure of the CH coatings obtained by cataphoresis was studied by scanning electron microscopy and the chemical composition was examined using EDAX. The functional groups and formed phases were analyzed using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. It was found that the CH coating thickness and porosity can be controlled by time and voltage used for the EPD process. It was ascertained that the studied EPD of the natural biopolymer, chitosan, in aqueous solution is applicable for the surface modification of the Ti13Zr13Nb implants to develop novel bioactive coatings.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2022 ◽  
Vol 321 ◽  
pp. 126326
Author(s):  
Gladis Aparecida Galindo Reisemberger de Souza ◽  
Ramón Sigifredo Cortés Paredes ◽  
Frieda Saicla Barros ◽  
Gustavo Bavaresco Sucharski ◽  
Sebastião Ribeiro Junior ◽  
...  

2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Lilik Miftahul Khoiroh ◽  
Asmaul Dwi Ayu Sholekah ◽  
Eny Yulianti

Hematite coated PEG was synthesized by the sonication-calcination method. A variation of Na2CO3 is investigated to know the effect on structure and morphology. Characterization of samples are using X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and color reader techniques. XRF data showed that iron is the highest element in the precursor. The X-ray diffraction data confirm that Fe(OH)3, α-FeOOH, and Fe3O4 established at the sonication stage are then transformed into the α-Fe2O3 phase after calcination. The X-ray diffraction data also was found that α-Fe2O3 at 0.5 M formed with the highest crystallinity degree. The scanning electron microscopy showed that the particle's shape is spherical, bar-shaped, and aggregate. However, the distribution of particles is not uniform and still displays agglomeration. The Color reader shows the highest degree of lightness obtained is at 1 M variation.


Sign in / Sign up

Export Citation Format

Share Document