scholarly journals Augmenting versatile peroxidase production from Lentinus squarrosulus and its role in enhancing ruminant feed

BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1600-1615
Author(s):  
Aarthi Ravichandran ◽  
Ramya G. Rao ◽  
Shanubhoganahalli Maheswarappa Gopinath ◽  
Manpal Sridhar

Lentinus squarrosulus, a white-rot Basidiomycete, produces versatile peroxidase under nutrient-limiting conditions. This study was undertaken to enhance the yield of versatile peroxidase from the fungus by optimizing the physiological factors of nutrients and their concentration, inducers, temperature, and pH. Optimal medium was devised using a central composite design – response surface methodology and experimental validation. The fungus produced high levels of versatile peroxidase at a C:N ratio of approximately 100, temperature of 35 °C, and initial pH of 7. Immobilization of Lentinus squarrosulus on inert polyurethane foam (PUF) with optimized medium for production enhanced the versatile peroxidase yield multifold. Maximal yield of versatile peroxidase achieved through optimization and immobilization strategies was 116 U/mL. Efficacy of crude versatile peroxidase on aromatics degradation was illustrated through Fourier transform infrared analysis. The results demonstrated the improvised yield of versatile peroxidase from Lentinus squarrosulus and its efficiency in delignification of crop residues, substantiating the role of this enzyme in biotechnological applications especially for enriching ruminant feed.

2018 ◽  
Author(s):  
R Aarthi ◽  
Ramya G Rao ◽  
Vandana Thammaiah ◽  
SM Gopinath ◽  
Manpal Sridhar

AbstractScarcity of quality feed is a major constraint concerning livestock productivity with recalcitrant lignin hindering utilization of crop residues as quality animal feed. Degradation of lignin in nature is contributed by white-rot fungi through their enriched ligninolytic system. Versatile Peroxidase plays a key role in ligninolysis through its capability to oxidize diverse class of aromatics without mediators. In this study, wild isolates of wood rotting fungi were screened for potential peroxidases oxidizing manganese and aromatic compounds. The strain identified asLentinus squarrosulus(TAMI004, BankIt2098576 MH172167) was monitored for enzyme activity in solid state and submerged fermentation.L. squarrosulusdemonstrated predominant Versatile Peroxidase activity amongst the screened wild isolates displaying hybrid characteristic of manganese oxidation and manganese independent reactions on aromatic compounds. The manganese oxidizing peroxidase activity evidenced in submerged fermentation was 12 IU/L whereas in solid state fermentation it was 131 IU/L. This ability to act through manganese mediated and independent reactions on phenolics reveals its biotechnological and industrial significance. Treatment of common crop residues with crude extract ofL. squarrosulusrich in Versatile Peroxidase obtained from both Solid state and submerged fermentations showed a decrease in their Neutral Detergent Fiber, Acid Detergent Fiber and Acid Detergent Lignin content showing biodegradation, substantiating the ligninolytic ability and more prominently increase in their digestibility. To the best of our knowledge, this is the first report describing Versatile Peroxidase fromLentinus squarrosuluswith potential to augment the ruminant digestibility of crop residues.ImportanceVersatile Peroxidase of White-rot fungi, a relatively less studied lignolytic enzyme, is very efficient in depolymerization of lignin macromolecule through its multivalent catalytic sites. Lignin degradation is very appealing from the application perspective as attack on lignin exposes the energy affluent polysaccharides for utilization in extensive biotechnological applications. Reports on relevance of Versatile Peroxidase for these purposes are still emerging, however the role of ligninolytic enzymes especially Versatile Peroxidase in enriching ruminant feed is yet unturned. Here, this work demonstrates the potential of Versatile Peroxidase from a novel speciesLentinus squarrosulusin delignification thereby upgrading the digestibility and nutritive value of crop residues. The observations validate the importance of the enzyme in improvement of crop residues for feeding ruminants in the current scenario where, livestock productivity is severely impacted by lack of quality feed and demand for alternate feed resources is intensifying.


2018 ◽  
Vol 69 (1) ◽  
pp. 38-44
Author(s):  
Nicoleta Mirela Marin ◽  
Olga Tiron ◽  
Luoana Florentina Pascu ◽  
Mihaela Costache ◽  
Mihai Nita Lazar ◽  
...  

This study investigates the synergistic effects of ion exchange and biodegradation methods to remove the Acid Blue 193 also called Gryfalan Navy Blue RL (GNB) dye from wastewater. Ion exchange studies were performed using a strongly basic anion exchange resin Amberlite IRA 400. The equilibrium was characterized by a kinetic and thermodynamic points of view, establishing that the sorption of the GNB dye was subject to the Freundlich isotherm model with R2 = 0.8710. Experimental results showed that the activated resin can removed up to 93.4% when the concentration of dye solution is 5.62�10-2 mM. The biodegradation of the GNB was induced by laccase, an enzyme isolated from white-rot fungus. It was also analyzed the role of pH and dye concentration on GNB biodegradation, so 5�10-2 mM dye had a maximum discoloration efficiency of 82.9% at pH of 4. The laccase showed a very fast and robust activity reaching in a few minutes a Km value of 2.2�10-1mM. In addition, increasing the GNB concentration up to 8�10-1 mM did not triggered a substrat inhibition effect on the laccase activity. Overall, in this study we proposed a mixt physicochemical and biological approach to enhance the GNB removal and biodegradability from the wastewaters and subsequently the environment.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 802
Author(s):  
Pierluigi Reveglia ◽  
Regina Billones-Baaijens ◽  
Jennifer Millera Millera Niem ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
...  

Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.


2004 ◽  
Vol 36 (6) ◽  
pp. 909-916 ◽  
Author(s):  
E Rodrı́guez ◽  
O Nuero ◽  
F Guillén ◽  
A.T Martı́nez ◽  
M.J Martı́nez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen Wang ◽  
Xuehong Ma ◽  
Gang Wang ◽  
Guitong Li ◽  
Kun Zhu

AbstractSoil O2 dynamics have significant influences on greenhouse gas emissions during soil management practice. In this study, we deployed O2-specific planar optodes to visualize spatiotemporal distribution of O2 in soils treated with biological soil disinfestation (BSD). This study aimed to reveal the role of anoxia development on emissions of N2O and CH4 from soil amended with crop residues during BSD period. The incorporation of crop residues includes wheat straw only, wheat straw with biochar and early straw incorporation. The anoxia in soil developed very fast within 3 days, while the O2 in headspace decreased much slower and it became anaerobic after 5 days, which was significantly affected by straw and biochar additions. The N2O emissions were positively correlated with soil hypoxic fraction. The CH4 emissions were not significant until the anoxia dominated in both soil and headspace. The co-application of biochar with straw delayed the anoxia development and extended the hypoxic area in soil, resulting in lower emissions of N2O and CH4. Those results highlight that the soil O2 dynamic was the key variable triggering the N2O and CH4 productions. Therefore, detailed information of soil O2 availability could be highly beneficial for optimizing the strategies of organic amendments incorporation in the BSD technique.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 219-224 ◽  
Author(s):  
J. Yoon ◽  
S. Kim ◽  
D.S. Lee ◽  
J. Huh

This study investigated the characteristics of Photo Fenton oxidation in comparison with Fenton oxidation in dark environments. The specific objective was to provide an in-depth understanding as to how the presence of UV would effect the reaction and its efficiency as compared to the Dark Fenton Oxidation. All reactions were carried out in batch mode at an initial pH of 3.5, with H2O2 in excess and iron in catalytic concentrations. The medium pressure mercury lamp (320-400 nm) was used as a UV source. The role of UV in Photo Fenton Oxidation of p-chlorophenol was found to be manyfold as compared to Dark Fenton Oxidation. It included the expedition of ferric ion reduction and the photolysis of H2O2, which exerted a direct impact on the p-chlorophenol degradation kinetics by enhancing the production of OH radical. Also included in the role was alteration of the quantity (and potentially quality) of intermediates, which would lead to a change in the decomposition kinetics in an indirect manner. Therefore, it was concluded that the performance of Photo Fenton Oxidation as compared to Dark Fenton Oxidation could vary in complicated ways depending upon the characteristics of target compounds and their intermediates.


1996 ◽  
Vol 10 (2) ◽  
pp. 105-124 ◽  
Author(s):  
F. Zadrazil ◽  
D. N. Kamra ◽  
O. S. Isikhuemhen ◽  
F. Schuchardt ◽  
G. Flachowsky

2017 ◽  
Vol 76 (7) ◽  
pp. 1726-1738 ◽  
Author(s):  
Raluca Maria Hlihor ◽  
Mihaela Roşca ◽  
Teresa Tavares ◽  
Maria Gavrilescu

The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.


Author(s):  
Alicia Garcia-Costa ◽  
André Savall ◽  
Juan A. Zazo ◽  
Jose A. Casas ◽  
Karine Groenen Serrano

Perfluorooctanoic acid (PFOA), C7F15COOH, has been widely employed over the past fifty years, causing an environmental problem due to its dispersion and low biodegradability. Furthermore, the high stability of this molecule, conferred by the high strength of the C-F bond makes it very difficult to remove. In this work, electrochemical techniques are applied for PFOA degradation in view to study the influence of the cathode on defluorination. For this purpose, boron doped diamond (BDD), Pt, Zr and stainless steel have been tested as cathodes working with BDD anode at low electrolyte concentration (3.5 mM) to degrade PFOA at 100 mg/L. Among these cathodic materials, Pt improves the defluorination reaction. The electro-degradation of a PFOA molecule starts by a direct exchange of one electron at the anode and then follows a complex mechanism involving reaction with hydroxyl radicals and adsorbed hydrogen on the cathode. It is assumed that Pt acts as an electrocatalyst, enhancing PFOA defluorination by the reduction reaction of perfluorinated carbonyl intermediates on the cathode. The defluorinated intermediates are then more easily oxidized by HO• radicals. Hence, high mineralization (xTOC: 76.1%) and defluorination degrees (xF-: 58.6%) were reached with Pt working at current density j = 7.9 mA/cm2. This BDD-Pt system reaches a higher efficiency in terms of defluorination for a given electrical charge than previous works reported in literature. Influence of the electrolyte composition and initial pH are also explored.


Sign in / Sign up

Export Citation Format

Share Document