Mechanical behavior of toilet paper perforation

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4846-4861
Author(s):  
Joana C. Vieira ◽  
André C. Vieira ◽  
António de O. Mendes ◽  
Ana M. Carta ◽  
Paulo T. Fiadeiro ◽  
...  

Perforation is used in multilayer tissue products, such as toilet and kitchen papers, as part of the converting process. Perforation facilitates the detachment of consecutive sheets by the user. The compromise between the strength required to detach a perforated sheet and the strength required to break a sheet affects the perforation efficiency. In this work, the mechanical behaviors of 15 commercial papers from different European producers were studied. A morphological analysis of the materials was performed, followed by the determination of their perforation efficiency (through tensile tests). A qualitative analysis of the cuts quality, along with a quantitative analysis of the same cuts dimensions was performed through an optical system. Finally, the stress concentration in the holes and the influence of the cuts distance were analyzed using a finite element model implemented in Abaqus/Standard finite element software. The results showed that a cut distance of 2.0 mm should not be used in these types of papers, and the perforation efficiency increased with the cut distance, regardless of the number of plies in the toilet paper. The stress concentration factor was also determined to have a limit value of 0.11. Papers above this limit value tear at the perforation line, as desired.

2015 ◽  
Vol 719-720 ◽  
pp. 55-58
Author(s):  
Yan Ling Zhao ◽  
Xue Song Yang ◽  
Zi Yan Yun ◽  
Hong Bo Wang ◽  
Guan Hong Xu

Aiming at the problem that temperature filed changes can lead to edge cracks emerge to Al-Si alloy 4004 in the process of hot rolling, in this paper, finite element model of temperature field variations in the process of rolling have been established by the method of finite element numerical simulation. The relationship between temperature field variations and edge crack defects has been analyzed. The results show that temperature field of rolled piece is gradient variations, low in the center and high in the edge, metal accumulation in the edge, leading to stress concentration and forming cracks source, resulting in edge cracks arising in edge of roller piece. Finally, the reliability and accuracy of the numerical simulation method have been verified by hot-rolled tests and tensile tests. All the studies provide ideas for theoretical analysis of temperature variation during hot rolling and have important significance on improve the quality of products.


2007 ◽  
Vol 546-549 ◽  
pp. 1591-1596
Author(s):  
Wei Feng Dong ◽  
Yong Li ◽  
Jun Xiao

As for 2.5-D layer-to-layer angle interlock braided composites, the cross section of the warp tow was represented in double-convex lens form, and the center line of the warp tow was along the sinusoid. The arranging characteristic of weft tow fibers along the cross section outline of the longitude fibers was studied in detail. A novel finite element model for 2.5-D braided composites was established to predict elastic modulus. The finite element software ANSYS was adopted to study the mechanical properties of the model and presented its stress nephogram, and the influence of the braided structure parameters on the elastic modulus of this material was analyzed in detail. To validate this model, qualified experimental samples were made by VARTM technique, and then tensile tests were performed to determine the mechanical properties. The results show that the conclusions of finite element method (FEM) fit well with the experimental values, and this model can be used to predict effectively the macro modulus of 2.5-D braided composites.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 828 ◽  
Author(s):  
Hwang ◽  
Liu

In this study, dieless drawing experiments of stainless steel SUS304 wires of 1 mm in diameter were carried out using a self-developed dieless drawing machine. In order to prevent oxidation, argon gas was applied to a self-designed chamber during dieless drawing processes. The effects of the forming temperature and the oxide layer on the mechanical properties of the drawn SUS304 stainless wires obtained by tensile tests are discussed in this paper. A finite element model considering the high frequency induction heating mode in the finite element software DEFORM2D was developed to conduct the heat transfer analysis and the formability analysis of the drawn products in dieless drawing of stainless steel wires. The effects of the drawing speed and forming temperature on the maximal reachable area reductions are discussed. Through the comparisons of the maximal reachable area reduction between the finite element simulations and experiments, the finite element modelling for dieless drawing processes was validated.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Author(s):  
Márton Tamás Birosz ◽  
Mátyás Andó ◽  
Sudhanraj Jeganmohan

AbstractDesigning components is a complex task, which depends on the component function, the raw material, and the production technology. In the case of rotating parts with higher RPM, the creep and orientation are essential material properties. The PLA components made with the material extrusion process are more resistant than VeroWhite (material jetting) and behave similarly to weakly cross-linked elastomers. Also, based on the tensile tests, Young’s modulus shows minimal anisotropy. Multilinear isotropic hardening and modified time hardening models are used to create the finite element model. Based on the measurements, the finite element method simulation was identified. The deformation in the compressor wheel during rotation became definable. It was concluded that the strain of the compressor wheel manufactured with material extrusion technology is not significant.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2021 ◽  
pp. 1-24
Author(s):  
Hamidreza Mahdavi ◽  
Konstantinos Poulios ◽  
Christian F. Niordson

Abstract This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice. Firstly, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp-indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force-displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.


Sign in / Sign up

Export Citation Format

Share Document