scholarly journals Prediction of elastic modulus and mid-span deflection of bamboo-wood composite laminates

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7784-7798
Author(s):  
Aonan Chen ◽  
Yi Liang ◽  
Zhilin Jiang ◽  
Jianping Sun

To better guide the manufacturing of bamboo-wood composite laminates, classical theory, first-order shear theory, and finite element method were used to predict the elastic modulus and deflection of bamboo-wood composite laminates. The influence of the adhesive layer on the elastic modulus and deflection of composite materials was considered. The effect of transverse shear on the mechanical properties of materials became smaller and smaller with an increasing span-to-height ratio. The effects of the adhesive layer on the elastic modulus and deflection were ± 0.5% and -0.1% to 0.3%, respectively. The transverse elastic modulus and mid-span deflection predicted by the three methods were quite different from the experimental results. When the span-to-height ratio was equal to 20, the prediction error of longitudinal elastic modulus by the three methods was less than 6%, which can be used to predict the elastic modulus of composite materials. The results provide a novel method to predict the properties of bamboo-wood composite laminates.

2017 ◽  
Vol 24 (1) ◽  
pp. 72-84
Author(s):  
J Venetis ◽  
E Sideridis

A lower bound of the longitudinal elastic modulus of polymer composite materials reinforced with unidirectional continuous fibres is obtained by means of a Differential Calculus approach. In the mathematical derivations, the concept of interphase between the fibre and matrix was also taken into consideration. The three phases are considered as isotropic. The results obtained from the proposed formula were compared with those arising from some reliable and accurate theoretical models as well as with experimental data found in the literature, and a reasonable agreement was observed.


2017 ◽  
Vol 14 (4) ◽  
pp. 30-38
Author(s):  
V. G. Isaev ◽  
T. N. Antipova

Basic provisions of the concept and methodology of production of composite materials for the missile and space equipment are offered. The system of the purposes realizing the principle of a priority of the purposes of the customer is offered. The system of evaluation criteria and indicators of quality of composite materials the realizing interrelation of requirements of the customer to quality of material and dependence of ensuring the required quality on the used technologies is developed. It is shown that for ensuring quality of composite materials for units and the RKT systems first of all it is necessary development of mathematical dependences of properties of materials on parameters of the technological modes in the conditions of obligatory implementation of requirements of the customer.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1807
Author(s):  
Rocío Guerle-Cavero ◽  
Blanca Lleal-Fontàs ◽  
Albert Balfagón-Costa

In 2023, new legislation will ban the use of animals in the cosmetic industry worldwide. This fact, together with ethical considerations concerning the use of animals or humans in scientific research, highlights the need to propose new alternatives for replacing their use. The aim of this study is to create a tri-layered chitosan membrane ionically crosslinked with sodium tripolyphosphate (TPP) in order to simulate the number of layers in human skin. The current article highlights the creation of a membrane where pores were induced by a novel method. Swelling index, pore creation, and mechanical property measurements revealed that the swelling index of chitosan membranes decreased and, their pore formation and elasticity increased with an increase in the Deacetylation Grade (DDA). Additionally, the results demonstrate that chitosan’s origin can influence the elastic modulus value and reproducibility, with higher values being obtained with seashell than snow crab or shrimp shells. Furthermore, the data show that the addition of each layer, until reaching three layers, increases the elastic modulus. Moreover, if layers are crosslinked, the elastic modulus increases to a much greater extent. The characterization of three kinds of chitosan membranes was performed to find the most suitable material for studying different human skin properties.


1995 ◽  
Vol 400 ◽  
Author(s):  
S. Vepřek ◽  
M. Haussmann ◽  
S. Reiprich

AbstractWe have developed a theoretical concept for the design of novel superhard materials and verified it experimentally on several systems nc-MenN/a-Si3N4 (nc-MenN is a nanocrystalline transition metal nitride imbedded in a thin amorphous Si3N4 matrix). Hardness in excess of 5000 kg/mm2 (about 50 GPa) and elastic modulus of ≥550 GPa have been achieved [1-3]. Here we address the questions of the universality of the concept for the design of a variety of nc/a systems and the upper limit of the hardness which may be achieved.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2012 ◽  
Vol 583 ◽  
pp. 49-52
Author(s):  
Zhong Hai Wang ◽  
Ru Jian Yuan ◽  
Xiao Bing Fan

With the table tennis technical innovation and improvement of science, high-performance materials are used to manufacture of table tennis plate floor and help athletes have achieved better results. This article elaborated the wood composite materials’s impact on batting techniques through the analysis of the function of table tennis racket floor and its structure and capacity based on material science for provide the reference on manufacturing and selecting of table tennis racket.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Sign in / Sign up

Export Citation Format

Share Document