scholarly journals Oil Uptake Percentage in Oil-Heat-Treated Wood, its Determination by Soxhlet Extraction, and its Effects on Wood Compression Strength Parallel to the Grain

BioResources ◽  
2013 ◽  
Vol 9 (1) ◽  
Author(s):  
Dali Cheng ◽  
Lijun Chen ◽  
Shenxue Jiang ◽  
Qisheng Zhang
Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Manoj Kumar Dubey ◽  
Shusheng Pang ◽  
John Walker

Abstract Pinus radiata wood specimens were heat-treated at 160–210°C in linseed oil and the effects of treatment on chemical composition, color, dimensional stability, and fungal resistance were examined. The degradation of hemicelluloses was the most remarkable feature, which is the principal reason for alterations in wood properties. Removal or migration of extractives, oil uptake and the accumulation of oil on the wood surface were observed. The color of heat-treated wood became more uniform and darker, and its dimensional stability (i.e., anti-swelling efficiency) and fungal resistance were improved by up to 60% and 36%, respectively. The viscosity of the oil after treatment was elevated with the treatment temperature and was higher in comparison to heated oil without wood present.


Author(s):  
Tianyi Zhan ◽  
Zhiting Liu ◽  
Hui Peng ◽  
Jiali Jiang ◽  
Yaoli Zhang ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


2007 ◽  
Vol 66 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Milan Sernek ◽  
Michiel Boonstra ◽  
Antonio Pizzi ◽  
Aurelien Despres ◽  
Philippe Gérardin

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


2009 ◽  
Vol 55 (No. 9) ◽  
pp. 415-422 ◽  
Author(s):  
V. Gryc ◽  
H. Vavrčík

The aim of research was to find out the variability of spruce (<I>Picea abies</I> [L.]) Karst.) wood compression strength limits in the direction parallel to grain. The wood strength was examined using samples from a tree with present reaction (compression) wood. The strength was found out for individual stem zones (CW, OW, SWL and SWR). The zone with present compression wood (CW) demonstrated slightly higher values of wood strength limits. The differences in the limits of compression strength parallel to grain in individual zones were not statistically significant. All the data acquired by measuring were used to create 3D models for each zone. The models describe the strength along the radius and along the stem height. The change of strength along the stem radius was statistically highly significant. There was an obvious tendency towards an increase in the strength limit in the first 40 years. With the increased stem height, there is a slight decrease in wood strength.


2017 ◽  
Vol 740 ◽  
pp. 9-16
Author(s):  
Ahmed Sahib Mahdi ◽  
Mohammad Sukri Mustapa ◽  
Mahmod Abd Hakim Mohamad ◽  
Abdul Latif M. Tobi ◽  
Muhammad Irfan Ab Kadir ◽  
...  

The micro-hardness and compression of recycling aluminum alloy AA6061 were investigated as a function of the different microstructure and constituent powder metallurgy method. Five specimens were selected to investigate the compression strength and microhardness. The first, as fabricated specimen (as compacted), the second was as heat treated by quenching and aging process. Three specimens were mixed with Graphite particles as a reinforcement material. Compression strength values were tested for the specimens as fabricated and heat treated which were 195 and 300 MPa, respectively. The improvement ratio was 52% for the specimen as heat treated. On the other hand, high wear resistance was given by the specimen as heat treated, whereas, the lower wear strength was at the specimen mixed with 4.5% Graphite. These results were attributed to that the wear resistance related to the microhardness value.


Sign in / Sign up

Export Citation Format

Share Document