scholarly journals Theoretical study of heat transfer in straight circular pipes with periodically arranged surface flow turbulence semicircular cross-section for the flow of liquid metal to various geometrical and operating parameters

2018 ◽  
Vol 2 (5) ◽  
pp. 287-292
Author(s):  
Lobanov IE
Author(s):  
Seok Ho Yoon ◽  
Jeong Heon Shin ◽  
Dong Ho Kim ◽  
Jun Seok Choi

In this paper, we present the ongoing process of the research and development of the Printed Circuit Heat Exchanger (PCHE) on Floating Storage Regasification Unit (FSRU). We performed a structural simulation work to find the optimal design of fluid channels on heat transfer plates, fabricated the heat transfer plates, and calculated the capacity of the PCHE using our analytical tool. In the simulation work, the plates having channels of 1 mm semicircular cross section were designed by varying the wall thickness between channels. At a temperature, 1373 K, compressing pressures were varied as 30, 85.7, and 500 bars. Based on the simulation results, we fabricated and bonded heat transfer plates using the diffusion bonding equipment which our department developed. Then, the sizing of PCHE was done with analytical calculation for the developing PCHE on FSRU.


Author(s):  
S. Lloyd ◽  
A. Brown

This paper describes the results of an experimental investigation into the velocity and turbulence fields and to a lesser extent the heat transfer in the entrance regions of short, circular cross-section pipes with length to diameter ratios up to 20 over the Reynolds number range from 35,000 to 170,000. The velocity and turbulence fields were measured by hot-wire anemometers backed up with pressure measurements and flow visualisation and the heat transfer by heat flux meters.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Tao Wu ◽  
Lizhi Wang ◽  
Yicun Tang ◽  
Chao Yin ◽  
Xiankai Li

Developments in applications such as rocket nozzles, miniature nuclear reactors and solar thermal generation pose high-density heat dissipation challenges. In these applications, a large amount heat must be removed in a limited space under high temperature. In order to handle this kind of cooling problem, this paper proposes liquid metal-based microchannel heat sinks. Using a numerical method, the flow and heat transfer performances of liquid metal-based heat sinks with different working fluid types, diverse microchannel cross-section shapes and various inlet velocities were studied. By solving the 3-D steady and conjugate heat transfer model, we found that among all the investigated cases, lithium and circle were the most appropriate choices for the working fluid and microchannel cross-section shape, respectively. Moreover, inlet velocity had a great influence on the flow and heat transfer performances. From 1 m/s to 9 m/s, the pressure drop increased as much as 65 times, and the heat transfer coefficient was enhanced by about 74.35%.


Sign in / Sign up

Export Citation Format

Share Document