scholarly journals Development of hull-less barley with ultra-low gluten content via target genes combination. I. Isolation of triple mutants and black grained genotypes

2021 ◽  
Vol 8 (1) ◽  
pp. 47-57
Author(s):  
O. Rybalka ◽  
V. Katrii ◽  
S. Polishchuk ◽  
B. Morgun

Aim. The purpose of the research, presented in this paper, is to develop (as the first one in Ukraine) hull-less barley breeding material with ultra-low gluten, combining three hordein-deficient mutations, derived from Risø56, Risø1508, and R118, with black grain color as an indication of bioactive pigments content, enhancing the functional status of grain as a food product. Methods. We used electrophoretic analysis of proteins in polyacrylamide gel, DNA isolation by the CTAB method, polymerase chain reaction with DNA-markers, restriction analysis and electrophoretic separa tion of DNA in agarose gel. Results. The article presents the results of the first stage of combining target hordeindefi cient mutations by binary crosses. The F2/3 and F3/4 populations were derived from binary crosses of Risø56 × Risø1508 (reciprocal Risø1508 × Risø56) and R118 × hull-less barley Achilles. The new PCR protocol was optimized. Markers B1hor, 3a5F and Dhor-m were selected to identify mutations in B, C and D hordeins. Conclusions. Several barley genotypes with one or two target hordein-deficient mutations and black grain color were isolated. The genotypes obtained will be used in a further backcrosses program, aimed at developing of a black hull-less barley variety with ultra-low gluten content.

2021 ◽  
Vol 39 (No. 5) ◽  
pp. 410-417
Author(s):  
Eliška Čermáková ◽  
Kamila Zdeňková ◽  
Kateřina Demnerová ◽  
Jaroslava Ovesná

The success of polymerase chain reaction (PCR) assay depends on template deoxyribonucleic acid (DNA) being sufficient with respect to both quantity and quality. Some biological materials contain compounds which inhibit the functioning of DNA polymerase and thus need to be removed as part of the DNA extraction procedure. The aim of the present experiments was to optimise the process of DNA isolation from various types of black, fruit and herbal teas. A comparison was made between two cetyltrimethylammonium bromide (CTAB)-based protocols and two commercially available DNA purification kits. The yield and integrity of the extracted DNA were monitored both spectrophotometrically and using agarose gel electrophoresis. The presence/absence of inhibitors in the DNA preparations was checked by running quantitative real-time PCRs. The optimal protocol was deemed to be the CTAB method described in ISO 21571:2005, so this method is recommended for the routine sample analysis of tea products.


Author(s):  
Maharani Pertiwi Koentjoro ◽  
Hidayah Sri Wilujeng ◽  
Astrina Dilla ◽  
Endry Nugroho Prasetyo

Isolation of deoxyribonucleotide (DNA) is an important step in molecular analysis. In this process, DNA must be obtained in sufficient quantities and in good quality for any further analysis. The Cetyl Trimethylammonium Bromide (CTAB) method is commonly used in DNA isolation of plant or fungal. This method is an alternative in DNA isolation since it is easy and inexpensive. This study aims to modify the CTAB method for DNA isolation from human cheek epithelium for any molecular analysis. Epithelial cells were taken from the oral cavity of the researcher. The isolation protocol included cell lysis step with CTAB buffer and proteinase-K, purification step with the addition of chloroform:isoamylalcohol (24:1), precipitation step with isopropanol. The results of the ratio analysis of DNA spectrophotometer at wavelengths of 260 and 280 nm in the range of 1.73-1.85. The quality of DNA isolation was observed by agarose gel electrophoresis and a firm band was obtained after Ethidium Bromide staining. The DNA concentration in both methods ranged from 400-480 mg/mL. The time required for both methods ranges from 2.5-3 hours. The modified CTAB method DNA isolation protocol produces DNA that has good quality and quantity for molecular analysis processes, such as Polymerase Chain Reaction (PCR).


1997 ◽  
Vol 25 (4) ◽  
pp. 233-235 ◽  
Author(s):  
John C. Thomas ◽  
Rami Khoury ◽  
Chris K. Neeley ◽  
Ann M. Akroush ◽  
Elizabeth C. Davies

1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


2007 ◽  
Vol 42 (10) ◽  
pp. 1249-1255 ◽  
Author(s):  
Cibele dos Santos Ferrari ◽  
Luciana Lehmkuhl Valente ◽  
Fábio Cristiano Angonesi Brod ◽  
Caroline Tagliari ◽  
Ernani Sebastião Sant'Anna ◽  
...  

1998 ◽  
Vol 262 (1) ◽  
pp. 79-82 ◽  
Author(s):  
Günther Bahnweg ◽  
Steffen Schulze ◽  
Evelyn M. Möller ◽  
Hilkea Rosenbrock ◽  
Christian Langebartels ◽  
...  

Author(s):  
Aymen Abdelhaleem ◽  
Nabil Dhayhi ◽  
Mohamed Salih Mahfouz ◽  
Ommer Daffalla ◽  
Mansour Mubarki ◽  
...  

Visceral leishmaniasis (VL) is the most severe clinical form of the disease and has been reported in the Jazan region of southwest Saudi Arabia. This study aimed to diagnose VL by real-time polymerase chain reaction (PCR) and the direct agglutination test (DAT) and to identify the causative Leishmania species. A total of 80 participants, including 30 suspected VL patients, 30 healthy endemic control individuals, and 20 malaria disease controls, were enrolled in this study. Blood samples were collected and tested for Leishmania DNA by real-time PCR and for antibody by the DAT. Sequencing of some amplified PCR products was used to identify the causative Leishmania species. The diagnosis of VL was successfully achieved by both real-time PCR and by DAT with 100% sensitivity. Leishmania donovani and Leishmania infantum species were detected by sequencing both by the kDNA and ITS1 target genes, followed a BLASTn search. The detection of VL antibody by the DAT followed by the confirmatory detection of Leishmania DNA in patient blood by PCR could promote the adoption of the much less invasive and more sensitive methods for the routine diagnosis of VL. Further study with high sample volume to evaluate the PCR and the DAT are needed, to generate more robust evidence. Based on the sequencing results, emerging studies on VL should focus on the causative Leishmania species, reservoirs, and vectors that are important in the study area.


Author(s):  
Dwiyitno Dwiyitno ◽  
Stefan Hoffman ◽  
Koen Parmentier ◽  
Chris Van Keer

Fish and seafood products has been commonly targeted for fraudulent activities. For that reason, authentication of fish and seafood products is important to protect consumers from fraudulent and adulteration practices, as well as to implement traceability regulation. From the viewpoint of food safety, authenticity is beneficial to protect public from serious food poisoning incidents, such as due to ingestion of toxic species. Since DNA based identification depends on the nucleic acid polymerase chain reaction (PCR), the quantity and quality/purity of DNA will contribute significantly to the species authentication. In the present study, different DNA extraction and purification methods (3 classical methods and one commercial kit) were compared to produce the better isolated DNA for PCR amplification. Additionally, different methods for the estimation of DNA concentration and purity which is essential for PCR amplification efficiency were also evaluated. The result showed that classical DNA extraction methods (based on TNES-Urea) yielded a higher amount of DNA (11.30-323.60 ng/g tissue) in comparison to commercial kit/Wizard Promega (5.70-83.45 ng/g tissue). Based on the purity of DNA extract (A260/280), classical DNA extraction method produced relatively similar on DNA quality to the commercial kit (1.79-2.12). Interestingly, all classical methods produced DNA with A260/280 ratio of more than 2.00 on the blue mussel, in contrast with commercial kit. The commercial kit also produced better quality of DNA compared to the classical methods, showing the higher efficiency in PCR amplification. NanoDrop is promising as cheap, robust and safe UV-spectrophotometer method for DNA quantification, as well as the purity evaluation.Keywords: seafood authenticity, DNA isolation, polymerase chain reaction, NanoDrop, Picogreen


Sign in / Sign up

Export Citation Format

Share Document