scholarly journals Morpho-physiological reactions of gravisensitivity and adaptation to UV-radiation of the moss Bryum Caespiticiumhedw. from Antarctica

2021 ◽  
Vol 27 (5) ◽  
pp. 47-59
Author(s):  
N.Ya. Kyyak ◽  
◽  
O.V. Lobachevska ◽  
Ya.D. Khorkavtsiv ◽  
◽  
...  

The adaptive physiological reactions of the moss Bryum caespiticium Hedw. from Antarctica to the influence of UV radiation and gravimorphoses as a factor of adaptive plasticity, associated with environmental conditions, were studied. As a control, B. caespiticium plants were collected in the Nature Reserve “Roztochchia” (Lviv region). In investigations, we used a sterile laboratory culture of mosses grown under controlled conditions in a phytotron. Moss shoots were irradiated with UV rays generated by an ultraviolet lamp OSRAM with an intensity of 4 kW/m2, which caused 50 % inhibition of plant regeneration (ED50). Physiological parameters were determined 24 h after exposure to UV radiation. The influence of gravity on the morphological form of B. caespiticium gametophyte turf and the interaction of light and gravity in gravi-/phototropism as a manifestation of gravimorphoses adaptability were analyzed. One of the objectives was to investigate the formation of gravimorphoses as a result of the initiation of cells’ branching processes and the formation of gametophore buds and to evaluate their role in the life cycle of B. caespiticium under extreme conditions. For this, we determined the branching coefficient of the gravitropic protonema, the inclination angle of the branches and the buds’ development depending on the interaction of photo- and gravitropism, under the influence of red and blue light, and the effect of UV on gravisensitivity. The influence of physiologically active red and blue light on the branching activity and bud formation on the gravitropic protonema of the Antarctic moss B. caespiticium was investigated. It was found that red light mainly inhibited graviperception and gravitropic growth of protonemata cells, resulting in a change of the response to gravity, but initiated high branching activity and, accordingly, another morphological form of turf. After the influence of the blue light, intensive bud formation and gametophore development were observed. Thus, gravitation promoted morphological variability and changes in the functional activity of cells at the juvenile stage of the protonemata development, which is important for the survival of the moss under extreme environmental conditions. After UV irradiation the gravisensitivity of the B. caespiticium protonemata decreased. However, due to the resistance of the moss sample from Antarctica to the prolonged influence of UV rays, gravitropic growth was not completely blocked, as in plants from the Lviv region. The effect of the ultraviolet irradiation on the antioxidant activity, the content of soluble (vacuolar) and cell wall-bound fractions of UV-absorbing phenolic components, flavonoids content and their absorption spectra, as well as the amount of carotenoids and anthocyanins in B. caespiticium shoots, were determined. It was established that B. caespiticium plants from Antarctica have 1.5 times higher antioxidant activity compared to plants from the Lviv region, which confirms the high level of protection against oxidative damage. UV irradiation activates the synthesis of UV-absorbing phenolic compounds in mosses. The shoots of B. caespiticium from Antarctica defined a higher content of phenols compared to samples from the Lviv region and their significant increase under the influence of UV radiation. The content of UV-absorbing compounds bound with the cell wall was higher than the concentration of soluble phenolic compounds, both in plants from Antarctica and in samples from the Lviv region, which indicates their participation in the mechanisms of cells protection from UV radiation. It was shown that the influence of UV irradiation induced an increase of flavonoids’ content in the shoots of both samples of B. caespiticium, but for plants from Antarctica, the concentration of flavonoids after stress was 1.7 times higher than in plants from the Lviv region. The absorption spectra of flavonoids revealed flavonols rutin and quercetin and flavone luteolin in both samples of B. caespiticium, which provide effective cells absorption of UV rays. The higher content of anthocyanins and carotenoids in moss shoots from Antarctica both in the control sample and after the exposure to UV radiation promotes the protection against damage and formation of the adaptive potential.

2019 ◽  
Vol 10 ◽  
pp. 10-15
Author(s):  
Nurul Yasmin ◽  
Wahyu ◽  
Angga

Secondary metabolites produced by plants have been known to have a variety of biological activities including antioxidants that serve to ward off oxidant compounds and free radicals. The roots of merung (Coptosapelta tomentosa) has been known to have strong activity as an antioxidant while antioxidant activity in the stem is not yet known to date.  This research aims to determine the secondary metabolites that have antioxidant activity on the root extracts and the stem of the vines qualitatively. The root extract and the stem of the merung plant are extracted with a methanol solvent using the maceration method. Antioxidant activity and identification of secondary metabolites are carried out qualitatively by the method of autography using the 2.2-Diphenyl-1-Picrylhydrazyl compound (DPPH) and some reagents of the secondary metabolite. Antioxidant activity of the merung root extract is on spot with RF 0.08 and 0.66. Spot with the RF 0.66 shows the brown color when reacted FeCl3, fluorescent yellow in UV rays 254 and 366 nm after reacted AlCl3 and red when reacted with KOH. The antioxidant activity of the merung stem extracts is at Rf 0.16, 0.33, 0.58, 0.66, and 0.75. Spot with the Rf 0.16 shows the color of brown when reacted FeCl3 and fluorescent blue in UV rays 254 and 366 nm after reacted AlCl3. Secondary metabolites that have antioxidant activity on root extracts and stems are suspected to be derivative phenolic compounds derived from flavonoid compounds.


2018 ◽  
Vol 17 (5) ◽  
pp. 47-59
Author(s):  
Hacer Coklar ◽  
Mehmet Akbulut ◽  
Iliasu Alhassan ◽  
Şeyma Kirpitci ◽  
Emine Korkmaz

Author(s):  
Khvorova L.S. ◽  
Byzov V.A.

The article is devoted to the creation of a carbohydrate product with rosehip extract in the form of sweets (glucose Fudge) with a therapeutic and preventive effect aimed at restoring the body of people exposed to intense physical and mental stress and the effects of damaging environmental factors. As carbohydrates in the recipe, simple carbohydrates (glucose) and complex carbohydrates in the form of starch molasses containing (maltose, tri - Tetra - sugars, dextrins) are used. Glucose in the formulation is the main energy ingredient, sweetener and structure-forming component that gives the product a solid consistency due to crystallization. The medicinal effect of the product is provided by rosehip extract. Numerous published studies have established its vitamin, immunostimulating and antioxidant activity, inhibition of uric acid formation and obesity, which are associated with flavonoids, other phenolic compounds, and vitamins. The list of medicinal properties of rosehip extract shows the feasibility of using it in additional nutrition of people in order to prevent diseases. For the formulation of our sweets, the extraction of crushed rosehip fruits was carried out three times with hot water at a temperature of 65-700C, followed by concentration of the extract under vacuum to 25-30% SV. The resulting extract-concentrate was introduced into the formulation in a dosage of 5.5% SV per 100 g of SV glucose Fudge, which provided the necessary dosage for the product when used from 3 (for children) to 10 sweets a day (for adults) for the prevention of colds.


2018 ◽  
Vol 14 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Raquel P.F. Guine ◽  
Fernando Goncalves ◽  
Clemence Lerat ◽  
Theo El Idrissi ◽  
Eva Rodrigo ◽  
...  

2020 ◽  
Vol 04 ◽  
Author(s):  
Vigen G. Barkhudaryan ◽  
Gayane V. Ananyan ◽  
Nelli H. Karapetyan

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions. Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work. Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis. Results: It was shown, that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which is accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution. Conclusion: It was concluded, that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, its solubility remains virtually unchanged during UV irradiation. The described comments are also excellently confirmed by the results of absorption spectroscopy and electrophoresis


LWT ◽  
2021 ◽  
Vol 136 ◽  
pp. 110370
Author(s):  
Stefano Ercoli ◽  
Jennifer Cartes ◽  
Pablo Cornejo ◽  
Gonzalo Tereucán ◽  
Peter Winterhalter ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1810
Author(s):  
Monika Kędzierska-Matysek ◽  
Małgorzata Stryjecka ◽  
Anna Teter ◽  
Piotr Skałecki ◽  
Piotr Domaradzki ◽  
...  

The study compared the content of eight phenolic acids and four flavonoids and the antioxidant activity of six Polish varietal honeys. An attempt was also made to determine the correlations between the antioxidant parameters of the honeys and their polyphenol profile using principal component analysis. Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS) and reduction capacity (FRAP) were determined spectrophotometrically, and the phenolic compounds were determined using high-performance liquid chromatography (HPLC). The buckwheat honeys showed the strongest antioxidant activity, most likely because they had the highest concentrations of total phenols, total flavonoids, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, vanillic acid and chrysin. The principal component analysis (PCA) of the data showed significant relationships between the botanic origin of the honey, the total content of phenolic compounds and flavonoids and the antioxidant activity of the six Polish varietal honeys. The strongest, significant correlations were shown for parameters of antioxidant activity and TPC, TFC, p-hydroxybenzoic acid, caffeic acid and p-coumaric acid. Analysis of four principal components (explaining 86.9% of the total variance), as a classification tool, confirmed the distinctiveness of the Polish honeys in terms of their antioxidant activity and content of phenolic compounds.


Sign in / Sign up

Export Citation Format

Share Document