scholarly journals Integral Thermo-Anemometers for Average Temperature and Airflow Measurement in Ducts, at Anemostat Outlets and in Ventilation Grilles

2020 ◽  
Vol 23 (4) ◽  
pp. 14-21
Author(s):  
Oleh S. Tsakanian ◽  
◽  
Serhii V. Koshel ◽  

When creating ventilation systems, it is important to correctly calculate the volumes of air inflow and outflow. If an error is made in the calculation or a redistribution of air flows is required, measurements are indispensable. The existing methods for determining the air flow rate by using point measurements in the cross-section are laborious and time-consuming, and taking readings at different time points introduces a significant error into the result. A. M. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine has developed a new hot-wire anemometer whose use greatly simplifies the measuring process. This device allows one to measure the average values of temperature and air velocity (flow rate) in the cross-section of air ducts or at the inlets and outlets of grilles and anemostats, and can be used in real time to monitor and control air flow rate and temperature in ventilation systems. The probe of the hot-wire anemometer is a metal shell with guides on which a sensitive element is laid. Its principle of operation is to change the heat transfer coefficient at different air leakage velocities. The anemometer is preliminarily calibrated in laboratory conditions at various velocities. There has been obtained a calibration dependence that can be used to measure the air flow rate at the inlets and outlets of air distribution devices and directly in the air ducts. To improve the measurement accuracy, it is necessary to provide the 90° angle of airflow leakage on the hot-wire anemometer probe. For this, special air collectors and air flow rectifiers are used.

2021 ◽  
Vol 24 (2) ◽  
pp. 6-15
Author(s):  
Oleh S. Tsakanian ◽  
◽  
Serhii V. Koshel ◽  

Air flow measurement at the outlets of air terminal devices installed in ventilation systems is very difficult. At the outlets of anemostats, swirl diffusers, grilles, the air flow can swirl, contract, or expand sharply, change its direction, etc., which causes great measurement errors. Therefore, it was necessary to develop a universal measuring device that would make it possible to measure air flow rate with high accuracy. It should consist of an air collector (for collecting and rectifying air flow) and a sensor for measuring air flow rate (integral hot-wire anemometer). Several air collector designs have been investigated. The parabolic air collector was chosen as the rational one. It has low aerodynamic resistance and good air flow distribution. To reduce the influence of turbulence and air swirling, a cylindrical stilling channel with a built-in rectifying grille is connected to the air collector. Experimental studies on various air distribution devices made it possible to obtain a refined calibration dependence for an integral hot-wire anemometer, the dependence being used to calculate air flow rate. The influence of the aerodynamic resistance of an airflow meter on air flow rate is taken into account with the help of a correction that must be introduced into the values measured.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3374 ◽  
Author(s):  
Yugang Wang ◽  
Xiang Huang ◽  
Li Li

This paper presents a comparative study of the cross-flow regenerative heat and mass exchanger (HMX) and the conventional cross-flow HMX for indirect evaporative cooling (IEC) with numerical methods. The objective of this study is mainly to clarify the applicability of the two HMXs. The numerical model was built and validated by existing experimental data. The difference in heat and mass transfer between the two HMXs was revealed by analyzing the change of the temperature and moisture content of the air, and the influence of the main operating parameters on the cooling performance of the HMXs was analyzed. In the typical operating conditions, when the HMXs are used alone, the cooling performance of the regenerative HMX is better than that of the conventional HMX under low supply air flow rate. When the HMXs are used in the multistage evaporative cooling systems with high supply air flow rate, the conventional HMX is more suitable as the first stage of the system to pre-cool the supply air, while the regenerative HMX is more suitable as the second stage to re-cool the supply air.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahrbanoo Hamedi ◽  
M. Mehdi Afsahi ◽  
Ali Riahi-Madvar ◽  
Ali Mohebbi

AbstractThe main advantages of the dried enzymes are the lower cost of storage and longer time of preservation for industrial applications. In this study, the spouted bed dryer was utilized for drying the garden radish (Raphanus sativus L.) root extract as a cost-effective source of the peroxidase enzyme. The response surface methodology (RSM) was used to evaluate the individual and interactive effects of main parameters (the inlet air temperature (T) and the ratio of air flow rate to the minimum spouting air flow rate (Q)) on the residual enzyme activity (REA). The maximum REA of 38.7% was obtained at T = 50 °C and Q = 1.4. To investigate the drying effect on the catalytic activity, the optimum reaction conditions (pH and temperature), as well as kinetic parameters, were investigated for the fresh and dried enzyme extracts (FEE and DEE). The obtained results showed that the optimum pH of DEE was decreased by 12.3% compared to FEE, while the optimum temperature of DEE compared to FEE increased by a factor of 85.7%. Moreover, kinetic parameters, thermal-stability, and shelf life of the enzyme were considerably improved after drying by the spouted bed. Overall, the results confirmed that a spouted bed reactor can be used as a promising method for drying heat-sensitive materials such as peroxidase enzyme.


1979 ◽  
Vol 3 (6) ◽  
pp. 357-362
Author(s):  
H. C. Hewitt ◽  
E. I. Griggs

Author(s):  
Ari Kettunen ◽  
Timo Hyppa¨nen ◽  
Ari-Pekka Kirkinen ◽  
Esa Maikkola

The main objective of this study was to investigate the load change capability and effect of the individual control variables, such as fuel, primary air and secondary air flow rates, on the dynamics of large-scale CFB boilers. The dynamics of the CFB process were examined by dynamic process tests and by simulation studies. A multi-faceted set of transient process tests were performed at a commercial 235 MWe CFB unit. Fuel reactivity and interaction between gas flow rates, solid concentration profiles and heat transfer were studied by step changes of the following controllable variables: fuel feed rate, primary air flow rate, secondary air flow rate and primary to secondary air flow ratio. Load change performance was tested using two different types of tests: open and closed loop load changes. A tailored dynamic simulator for the CFB boiler was built and fine-tuned by determining the model parameters and by validating the models of each process component against measured process data of the transient test program. The know-how about the boiler dynamics obtained from the model analysis and the developed CFB simulator were utilized in designing the control systems of three new 262 MWe CFB units, which are now under construction. Further, the simulator was applied for the control system development and transient analysis of the supercritical OTU CFB boiler.


Sign in / Sign up

Export Citation Format

Share Document