Design Method of a Rotor Structure with Notch for Reducing the Cogging Torque of a Double-Layered IPMSM

2020 ◽  
Vol 140 (6) ◽  
pp. 450-457
Author(s):  
Marika Kobayashi ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1880
Author(s):  
Elia Brescia ◽  
Donatello Costantino ◽  
Paolo Roberto Massenio ◽  
Vito Giuseppe Monopoli ◽  
Francesco Cupertino ◽  
...  

Permanent magnet machines with segmented stator cores are affected by additional harmonic components of the cogging torque which cannot be minimized by conventional methods adopted for one-piece stator machines. In this study, a novel approach is proposed to minimize the cogging torque of such machines. This approach is based on the design of multiple independent shapes of the tooth tips through a topological optimization. Theoretical studies define a design formula that allows to choose the number of independent shapes to be designed, based on the number of stator core segments. Moreover, a computationally-efficient heuristic approach based on genetic algorithms and artificial neural network-based surrogate models solves the topological optimization and finds the optimal tooth tips shapes. Simulation studies with the finite element method validates the design formula and the effectiveness of the proposed method in suppressing the additional harmonic components. Moreover, a comparison with a conventional heuristic approach based on a genetic algorithm directly coupled to finite element analysis assesses the superiority of the proposed approach. Finally, a sensitivity analysis on assembling and manufacturing tolerances proves the robustness of the proposed design method.


2014 ◽  
Vol 695 ◽  
pp. 778-782 ◽  
Author(s):  
Hassan Ali Soomro ◽  
Erwan Sulaiman ◽  
Mohd Fairoz Omar

This paper presents a new structure of hybrid excitation flux switching motor (HEFSM) using segmental rotor and the comparison of HEFSM and FEFSM using segmental rotor is performed to find the best candidate for hybrid electric vehicles (HEV). (HEFSM) using segmental rotor contains both the FEC and PM on the stator to produce maximum flux linkages. Initially, the coil arrangement tests are examined to validate the operating principle of the (HEFSM) using segmental rotor. Moreover the profile of flux linkage, cogging torque, and torque characteristics at various armature current densities of both the (HEFSM) and (FEFSM) using segmental rotor are observed based on 2D-finite element analysis (FEA). Initially performances show that HEFSM using segmental rotor produces torque of 18 Nm with low cogging torque and sinusoidal flux waveform. Thus by further design optimization the proposed motor will effectively achieve the target performances.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6745
Author(s):  
Byeong-Chul Lee ◽  
Cheon-Ho Song ◽  
Do-Hyun Kim ◽  
Ki-Chan Kim

In this paper, the design process of brushless DC (BLDC) motor adopting the dual rotor structure that can reduce the overall size of the motor while generating the same torque as the conventional permanent magnet BLDC motor is analyzed. A simple size is selected by obtaining the torque per rotor volume (TRV), and a method of matching the counter electromotive force by selecting the pole-arc of the magnet through a magnetic equivalent circuit is analyzed. Since the efficiency is low because the 120-degree commutation method is selected, the middle stator is optimized through detailed design through the experimental design method. Afterwards, it has the advantage of being able to shift without stopping due to the characteristic of a dual rotor. For this, an analysis of the driving characteristics for each mode is performed.


CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Adeguna Ridlo Pramurti

Abstrak—Generator magnet permanen fluks radial adalah mesin yang efektif untuk diaplikasikan pada sistem pembangkit listrik tenaga angin kecepatan rendah. Rugi magnetik akibat celah udara atau torsi denyut adalah salah satu masalah yang dapat menyebabkan penurunan performa tegangan keluaran dan daya keluaran pada generator jenis ini. Pada penelitian ini, topologi yang digunakan adalah stator ganda generator magnet permanen fluks radial. Topologi tersebut diharapkan mampu meningkatkan fluks listrik yang dihasilkan oleh kumparan-kumparan stator. Tujuan penelitian ini adalah untuk meningkatkan tegangan keluaran dan daya keluaran generator menggunakan metode desain pemasangan lebar gigi-gigi stator. Ada 3 variabel pada metode desain ini. Ketiga variabel desain mampu menurunkan nilai torsi denyut. Namun, ketiganya menyebabkan ketidakstabilan putaran generator. Hal ini disebabkan oleh peningkatan distribusi frekuensi torsi denyut. Ketiga variabel mampu meningkatkan tegangan keluaran generator dan daya keluaran generator masing-masing mencapai 3.94% dan 3.3%. Peningkatan tegangan keluaran dan daya keluaran generator tidak terlalu signifikan disebabkan oleh peningkatan distribusi frekuensi torsi denyut yang mencapai 162%.Kata kunci: daya keluaran, generator magnet permanen fluks radial, pemasangan lebar gigi-gigi stator, stator ganda, dan tegangan keluaran.Abstract— Radial flux permanent magnet generators are effective for application to low speed wind power generation systems. Magnetic loss due to air gap or called cogging torque is one of the problems that can cause a decrease in the output voltage and output power performance of this type of generator. In this study, the topology used is a dual stator radial flux permanent magnet generator. The topology is expected to increase the electrical flux produced by the stator coils. The purpose of this study is to increase the output voltage and output power of the generator using the stator teeth pairing design method. There are 3 variables in this design method. The three variables have been able to decrease the value of cogging torque. However, the three design variables have made the generator more unstable. This is due to an increase in the cogging torque frequency distribution. The three variables have been able to increase the generator output voltage and the generator output power respectively reached 3.94% and 3.3%. The increase in output voltage and output power of the generator is not too significant due to an increase in the cogging torque frequency distribution which reached 162%, karena itu tuliskan temuan atau kontribusi utama dari naskah sebaik mungkin dengan singkat. Keywords: cogging torque, dual stator, radial flux permanent magnet generator, output power, and output voltage


Author(s):  
Young Hyun Kim ◽  
Jung Ho Lee

PurposeThis study aims to propose criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration.Design/methodology/approachThe optimal design of the stator and rotor can be enhanced using both a response surface method (RSM) and finite element method (FEM). In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor.FindingsThe criteria not only improve performance but also reduce manufacturing costs. The criteria are verified FEM together with an RSM. These methods are used to optimize the stator and rotor shape and the magnetization system. These methods allow us to produce an efficient system for mass production of the motor.Originality/valueThis study proposed a design method that uses rare earth magnets in a system to replace the spoke-type IPM. To verify the optimal design, torque characteristics were analysed using FEM and RSM. Excellent results were achieved regarding the reduction of cogging torque and torque ripple. In addition, the design of the magnetizer enables a cost-effective mass production system for the motor.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2161
Author(s):  
Yusheng Hu ◽  
Liyi Li ◽  
Weilin Guo ◽  
Shanshan Wang

In engineering application, the hot press assembly technology is often used to improve the stability of the rotor structure, but the conventional design methods cannot effectively evaluate the influence of this process on the rotor strength, which easily causes the rotor strength to exceed its safety margin range, and seriously it will lead to the failure of the rotor structure. This paper takes the cylindrical magnet surface-mounted high-speed permanent magnet synchronous motor rotor as the research object. Firstly, the influence of the assembly pressing force on the rotor stresses and interference is analyzed; then, comprehensively considering the assembly pressing force, speed and temperature, the rotor strength’s design method with high structural stability is proposed. Finally, based on the proposed method, the rotor strength of a 100 kW/30,000 rpm high-speed motor is designed, and the feasibility of the design is verified by over-speed experiment.


2005 ◽  
Author(s):  
Michael Szczepkowski ◽  
Kelly Neville ◽  
Ed Popp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document