scholarly journals Space Weather Forecast : Protect our Life from Geomagnetic Storms

2008 ◽  
Vol 128 (1) ◽  
pp. 40-43
Author(s):  
Shunji NAGAMI ◽  
Kenji YAMAMOTO ◽  
Akitsugu NADAI
2016 ◽  
Vol 34 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Larisa Trichtchenko

Abstract. Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.


2020 ◽  
Vol 38 (4) ◽  
pp. 881-888
Author(s):  
Joyrles Fernandes de Moraes ◽  
Igo Paulino ◽  
Lívia R. Alves ◽  
Clezio Marcos Denardini

Abstract. The electric field induced in the Bolivia–Brazil gas pipeline (GASBOL) was calculated by using the distributed source line transmission (DSLT) theory during several space weather events. We used geomagnetic data collected by a fluxgate magnetometer located at São José dos Campos (23.2∘ S, 45.9∘ W). The total corrosion rate was calculated by using the Gummow (2002) methodology and was based on the assumption of a 1 cm hole in the coating of the pipeline. The calculations were performed at the ends of pipeline where the largest “out-of-phase” pipe-to-soil potential (PSP) variations were obtained. The variations in PSP during the 17 March 2015 geomagnetic storm have led to the greatest corrosion rate of the analyzed events. All the space weather events evaluated with high terminating impedance may have contributed to increases in the corrosion process. The applied technique can be used to evaluate the corrosion rate due to the high telluric activity associated with the geomagnetic storms at specific locations.


Author(s):  
Juan Durazo ◽  
Eric J. Kostelich ◽  
Alex Mahalov

The dynamics of many models of physical systems depend on the choices of key parameters. This paper describes the results of some observing system simulation experiments using a first-principles model of the Earth’s ionosphere, the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM), which is driven by parameters that describe solar activity, geomagnetic conditions, and the state of the thermosphere. Of particular interest is the response of the ionosphere (and predictions of space weather generally) during geomagnetic storms. Errors in the overall specification of driving parameters for the TIEGCM (and similar dynamical models) may be especially large during geomagnetic storms, because they represent significant perturbations away from more typical interactions of the earth-sun system. Such errors can induce systematic biases in model predictions of the ionospheric state and pose difficulties for data assimilation methods, which attempt to infer the model state vector from a collection of sparse and/or noisy measurements. Typical data assimilation schemes assume that the model produces an unbiased estimate of the truth. This paper tests one potential approach to handle the case where there is some systematic bias in the model outputs. Our focus is on the TIEGCM when it is driven with solar and magnetospheric inputs that are systematically misspecified. We report results from observing system experiments in which synthetic electron density vertical profiles are generated at locations representative of the operational FormoSat-3/COSMIC satellite observing platforms during a moderate (G2, Kp = 6) geomagnetic storm event on September 26–27, 2011. The synthetic data are assimilated into the TIEGCM using the Local Ensemble Transform Kalman Filter with a state-augmentation approach to estimate a small set of bias-correction factors. Two representative processes for the time evolution of the bias in the TIEGCM are tested: one in which the bias is constant and another in which the bias has an exponential growth and decay phase in response to strong geomagnetic forcing. We show that even simple approximations of the TIEGCM bias can reduce root-mean-square errors in 1-h forecasts of total electron content (a key ionospheric variable) by 20–45%, compared to no bias correction. These results suggest that our approach is computationally efficient and can be further refined to improve short-term predictions (∼1-h) of ionospheric dynamics during geomagnetic storms.


2021 ◽  
pp. 42-46
Author(s):  
ANASTASIA SERGEEVNA NADTOCHY ◽  
◽  
DMITRIY VLADIMIROVICH FOMIN ◽  

The paper presents information on the results of short-term space weather forecasting for the Vostochny cosmodrome based on data on the electron flux density with energies above 2 MeV received from satellites from the operator's site of the Space Weather Forecast Center of the Moscow State University Institute of Nuclear Physics. The analysis of the calculated data on the level of near-Earth radiation, as a result of the use of various extrapolation methods, showed that the method of exponential smoothing is most effective for short-term space weather forecasting. Such forecasts can be used when planning launches of launch vehicles from spaceports.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2021 ◽  
Author(s):  
Fabricio Prol ◽  
Mainul Hoque

<p>In this study, TEC measurements from METOP (Meteorological Operational) satellites are used together with a tomographic algorithm to estimate electron density distributions during geomagnetic storm events. The proposed method is applied during four geomagnetic storms to check the tomographic capabilities for space weather monitoring. The developed method was capable to successfully capture and reconstruct well-known enhancement and decrease of electron density during the geomagnetic storms. The comparison with in-situ electron densities from DMSP (Defense Meteorological Satellite Program) satellites has shown an improvement around 11% and a better plasma description compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase.</p>


2009 ◽  
Vol 27 (5) ◽  
pp. 2101-2110 ◽  
Author(s):  
P. V. S. Rama Rao ◽  
S. Gopi Krishna ◽  
J. Vara Prasad ◽  
S. N. V. S. Prasad ◽  
D. S. V. V. D. Prasad ◽  
...  

Abstract. The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere) comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS) that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena. Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC) measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB) L-band scintillation events, adversely affecting the GPS based navigation.


2016 ◽  
Vol 12 (S328) ◽  
pp. 315-328
Author(s):  
Vladimir S. Airapetian

AbstractOur Sun, a magnetically mild star, exhibits space weather in the form of magnetically driven solar explosive events (SEE) including solar flares, coronal mass ejections and energetic particle events. We use Kepler data and reconstruction of X-ray and UV emission from young solar-like stars to recover the frequency and energy fluxes from extreme events from active stars including the young Sun. Extreme SEEs from a magnetically active young Sun could significantly perturb the young Earth's magnetosphere, cause strong geomagnetic storms, initiate escape and introduce chemical changes in its lower atmosphere. I present our recent simulations results based on multi-dimensional multi-fluid hydrodynamic and magnetohydrodynamic models of interactions of extreme CME and SEP events with magnetospheres and lower atmospheres of early Earth and exoplanets around active stars. We also discuss the implications of the impact of these effects on evolving habitability conditions of the early Earth and prebiotic chemistry introduced by space weather events at the early phase of evolution of our Sun.


Sign in / Sign up

Export Citation Format

Share Document