Magneto-optical Cavity Effect on Magnetic Stacked Films for Hydrogen Gas Sensing Applications

2019 ◽  
Vol 139 (9) ◽  
pp. 317-322
Author(s):  
Haruki Yamane
Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5101
Author(s):  
Nirmal Kumar ◽  
Stanislav Haviar ◽  
Jiří Rezek ◽  
Pavel Baroch ◽  
Petr Zeman

By tuning the deposition parameters of reactive high-power impulse magnetron sputtering, specifically the pulse length, we were able to prepare WO3−x films with various stoichiometry and structure. Subsequently, the films were annealed in air at moderate temperature (350 °C). We demonstrate that the stoichiometry of the as-deposited films influences considerably the type of crystalline phase formed in the annealed films. The appropriate sub-stoichiometry of the films (approx. WO2.76) enabled crystallization of the monoclinic phase during the annealing. This phase is favorable for hydrogen sensing applications. To characterize the sensory behavior of the films, the tungsten oxide films were decorated by Pd nanoparticles before annealing and were assembled as a conductometric gas sensor. The sensory response of the films that crystallized in the monoclinic structure was proven to be superior to that of the films containing other phases.


2018 ◽  
Vol 215 (7) ◽  
pp. 1700772 ◽  
Author(s):  
Mathias Hoppe ◽  
Oleg Lupan ◽  
Vasile Postica ◽  
Niklas Wolff ◽  
Viola Duppel ◽  
...  

2013 ◽  
Vol 39 ◽  
pp. S447-S450 ◽  
Author(s):  
Husam S. Al-Salman ◽  
M.J. Abdullah ◽  
Naif Al-Hardan

Author(s):  
Mahnaz Shafiei ◽  
Abu Z Sadek ◽  
Jerry Yu ◽  
Rashidah Arsat ◽  
Kay Latham ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
V. Tilak ◽  
M. Ali ◽  
V. Cimalla ◽  
V. Manivannan ◽  
P. Sandvik ◽  
...  

ABSTRACTHydrogen gas sensors based on Pt/GaN Schottky diode structures were fabricated and their responses to hydrogen were studied. These diodes were fabricated on Si doped GaN layer (ND = 1×1017). Three sets of diodes were fabricated with 80 Å, 240 Å and 400 Å of Pt for the Schottky contacts. The electronic performances of 0.25 × 0.25 mm devices were tested in up to 1 % H2 gas in synthetic air (79% N2, 21% O2) by volume. The devices were operated in constant current mode in a forward bias condition. The change in voltage was monitored with the diodes exposed to hydrogen and to dry air at varying temperatures. The responses increased as the thickness of the Schottky metal contact decreased at any given temperature up to 310 °C. The trend of increasing response with decreasing thickness was also observed in 0.5 × 0.5 mm and 1.0 × 1.0 mm size Schottky diodes. SEM studies of the microstructure showed that the thinner Pt devices had higher grain boundary densities. The increase in sensitivity with decreasing thickness points to the dissociation of molecular hydrogen on the surface, the diffusion of atomic hydrogen through the Pt grain boundaries and the adsorption of hydrogen to the surface as a possible mechanism of sensing of hydrogen by Schottky diodes.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4470
Author(s):  
Mohammad Kamal Hossain ◽  
Qasem Ahmed Drmosh

A simple and hands-on one-step process has been implemented to fabricate polymer-templated hydrophobic nanostructures as hydrogen gas sensing platforms. Topographic measurements have confirmed irregular hills and dips of various dimensions that are responsible for creating air bubble pockets that satisfy the Cassie–Baxter state of hydrophobicity. High-resolution field-emission scanning electron microscopy (FESEM) has revealed double-layer structures consisting of fine microscopic flower-like structures of nanoscale petals on the top of base nanostructures. Wetting contact angle (WCA) measurements further revealed the contact angle to be ~142.0° ± 10.0°. Such hydrophobic nanostructures were expected to provide a platform for gas-sensing materials of a higher surface area. From this direction, a very thin layer of palladium, ca. 100 nm of thickness, was sputtered. Thereafter, further topographic and WCA measurements were carried out. FESEM micrographs revealed that microscopic flower-like structures of nanoscale petals remained intact. A sessile drop test reconfirmed a WCA of as high as ~130.0° ± 10.0°. Due to the inherent features of hydrophobic nanostructures, a wider surface area was expected that can be useful for higher target gas adsorption sites. In this context, a customized sensing facility was set up, and H2 gas sensing performance was carried out. The surface nanostructures were found to be very stable and durable over the course of a year and beyond. A polymer-based hydrophobic gas-sensing platform as investigated in this study will play a dual role in hydrophobicity as well as superior gas-sensing characteristics.


Sign in / Sign up

Export Citation Format

Share Document