scholarly journals ID3015 Mesenchymal stem cells for treatment of chronic wounds: A Study with autologous transplantation of adipose-derived stem cells

2017 ◽  
Vol 4 (S) ◽  
pp. 27
Author(s):  
Han Van Dinh

Objective: This study was to determine the effects of adipose-derived stem cells (ADSCs) on dermal fibroblasts responses to injury including migration and proliferation in vitro. We also evaluated the autologous transplantation of ADSCs on treatment of  human chronic wounds.  Subjects and methods: The proliferation and migration of fibroblast was evaluated by co-culture ADSCs with allogenic dermal fibroblast and by the scratch assay. In clinical study, autologous ADSCs were transplanted on to chronic wounds of 25 patients, who were hospitalized into the Wound Healing Department of the National Institute of Burns from April, 2015 to June, 2016. The mean age was 56.88 ± 16.81, male/female ratio was 2.12. The autologous adipose-derived stem cells at passages 5 were transplanted on surface of wound every 3÷5 days. The wound biopsies for H&E staining and for Transmission Electron Microscope  were taken before transplantation and at day 7, day15 and day 20 of studied progress.  Results: ADSCs stimulated fibroblast proliferation and migration in wound healing assay. In clinical study, before transplantation, extracellular matrix (ECM) was destroyed. After transplantation, ADSCs strongly stimulated fibroblast proliferation and fibroblasts to produce collagen. ADSCs also promoted proliferations of epithelial cells and neovascularization at the chronic wound site.  Conclusion: Autologous ADSCs promoted the wound healing process by cell proliferation and improvement of ECM in chronic wound site.

2020 ◽  
Vol 21 (6) ◽  
pp. 1966
Author(s):  
Yixiao Liu ◽  
Jiangnan Sun ◽  
Xinyu Ma ◽  
Shuangshuang Li ◽  
Min Ai ◽  
...  

Background: Diabetes mellitus is a growing global health issue nearly across the world. Diabetic patients who are prone to develop diabetes-related complications often exhibit progressive neuropathy (painless and sensory loss). It is usual for small wounds to progress to ulceration, which especially worsens with peripheral arterial disease and in the presence of anaerobic bacteria, culminating into gangrene. In our study, vaccarin (VAC), the main active monomer extracted from Chinese herb vaccariae semen, is proven to have a role in promoting diabetic chronic wound healing through a cytoprotective role under high glucose conditions. Materials and methods: We constructed a pressure ulcer on both VAC-treated and control mice based on a type 1 diabetes (T1DM) model. The wound healing index was evaluated by an experimental wound assessment tool (EWAT). We also determined the effect of VAC on the proliferation and cell migration of human microvascular endothelial cells (HMEC-1) by a cell counting kit (CCK-8), a scratch and transwell assay. Results: The results demonstrated that VAC could promote the proliferation and migration of high glucose-stimulated HMEC-1 cells, which depend on the activation of FOXP2/AGGF1. Activation of the angiogenic factor with G patch and FHA domains 1 (AGGF1) caused enhanced phosphorylation of serine/threonine kinase (Akt) and extracellular regulated protein kinases (Erk1/2). By silencing the expression of forkhead box p2 (FOXP2) protein by siRNA, both mRNA and protein expression of AGGF1 were downregulated, leading to a decreased proliferation and migration of HMEC-1 cells. In addition, a diabetic chronic wound model in vivo unveiled that VAC had a positive effect on chronic wound healing, which involved the activation of the above-mentioned pathways. Conclusions: In summary, our study found that VAC promoted chronic wound healing in T1DM mice by activating the FOXP2/AGGF1 pathway, indicating that VAC may be a promising candidate for the treatment of the chronic wounds of diabetic patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jiachao Xiong ◽  
Boyao Ji ◽  
Liujun Wang ◽  
Yazhou Yan ◽  
Zhixiao Liu ◽  
...  

Seawater (SW) immersion can increase the damage of skin wounds and produce refractory wounds. However, few studies have been conducted to investigate the mechanisms of SW immersion on skin wounds. In our current study, we investigated the effect of human adipose-derived stem cells (hADSCs) on the repair of SW-treated full-thickness skin wounds and the underlying mechanisms. The results showed that SW immersion could reduce the expression of EGF and suppress the activation of the MEK/ERK signaling pathway. At the same time, the proliferation and migration of skin stem cells were inhibited by SW immersion, resulting in delayed wound healing. However, hADSCs significantly accelerated the healing of SW-immersed skin wounds by promoting cell proliferation and migration through the aforementioned mechanisms. Our results indicate a role for hADSCs in the repair of seawater-immersed skin wounds and suggest a potential novel treatment strategy for seawater-immersed wound healing.


Author(s):  
Jianing Tang ◽  
Qiuxia Cui ◽  
Dan Zhang ◽  
Xing Liao ◽  
Yan Gong ◽  
...  

Abstract Background Stromal cells recruited to the tumor microenvironment and long non-coding RNAs (lncRNAs) in the tumor cells regulate cancer progression. However, their relationship is largely unknown. Methods In the current study, we identified the effects of lncRNA FAM83H-AS1, induced by adipose-derived stem cells (ADSCs) during tumor development, and explored the underlying mechanisms using a coculture cell model. Adipose tissues were obtained from healthy female donors, the expression of stromal markers on cell surface of expanded ADSCs were confirmed using immunofluorescence analysis. The breast and pancreatic cancer cells were cultured with or without ADSCs using 24-well transwell chamber systems with 8.0 µm pore size. Results Our results showed that FAM83H-AS1 was upregulated in breast and pancreatic cancers and associated with poor prognosis. ADSCs further induced FAM83H-AS1 and increased tumor cell proliferation via promoting G1/S transition through cyclin D1, CDK4 and CDK6. Wound healing, modified Boyden chamber and immunoblotting assays demonstrated that ADSCs induced epithelial-mesenchymal transition and migration of breast and pancreatic cancer cells in a FAM83H-AS1-dependent manner. And ADSC-induced FAM83H-AS1 increased unfolded protein response through AKT/XBP1 pathway. Conclusion In conclusion, our results indicated that ADSCs promoted breast and pancreatic cancer development via inducing cell proliferation and migration, as well as unfolded protein response through FAM83H-AS1.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 207-218 ◽  
Author(s):  
Zhaohua Jiang ◽  
Qingxiong Yu ◽  
Lingling Xia ◽  
Yi Zhang ◽  
Xiuxia Wang ◽  
...  

Background: Keloids are fibroproliferative scars that develop as a result of a dysregulated wound healing process; however, the molecular mechanisms of keloid pathogenesis remain unclear. Keloids are characterized by the ability to spread beyond the original boundary of the wound, and they represent a significant clinical challenge. Previous work from our group suggested that growth differentiation factor (GDF)-9 plays a role in the invasive behavior of keloids. Here, we examined the involvement of GDF-9 in keloid formation and spread and elucidated a potential underlying mechanism. Methods: The expression of GDF-9, cyclooxygenase (COX)-2, vascular epidermal growth factor (VEGF)-C, matrix metalloprotease (MMP)-2, MMP-9, transforming growth factor (TGF)-β1, and the related signaling pathway components in human keloid tissues or keloid fibroblasts (kFBs) was monitored by qRT-PCR and western blot. A series of overexpression and silencing experiments in normal and keloid fibroblasts were used to modify the expression of GDF-9. The effects of GDF-9 on kFB proliferation and migration were assessed using the CCK-8, cell cycle and scratch wound healing assays. Results: GDF-9 promotes fibroblast proliferation and migration. GDF-9 silencing in kFBs decreased cell proliferation, blocked cell cycle progression, downregulated the angiogenic markers COX-2 and VEGF-C, and downregulated MMP-2 and MMP-9 expression, whereas it had no effect on the levels of TGF-β1. GDF-9 silencing significantly inhibited Smad2 and Smad3 phosphorylation in kFBs. Conclusions: GDF-9 promotes the proliferation and migration of kFBs via a mechanism involving the Smad2/3 pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Janusz Kmiecik ◽  
Michał Jerzy Kulus ◽  
Jarosław Popiel ◽  
Agnieszka Cekiera ◽  
Marek Cegielski

Abstract Background Chronic wounds constitute a significant medical and social problem. Chronic wound treatment may be supported by various techniques, such as negative pressure therapy, phototherapy or stem cells therapy, yet most of those supporting therapies need more evidence to be used for standard wound care. Current study covers the use of sonicated Antlerogenic Stem Cells (ASC) extract on chronic wounds. Methods Study was performed on 20 dermatological patients with venous leg ulcers, divided into two groups – treated with and without ASC extract respectively. The area and circumference of the wounds during the follow-up visits were measured on the wound imprint. Dynamics of wound healing was determined and compared between control and study group; statistics includes changes in absolute values (wound area, circumference), as well as relative (percentage of wound decrease, circumference/area ratio) and their change in time. For the purpose of Ki-67 immunohistochemical staining, sections were sampled from the wound edge at distinct check-points during therapy. Results of both groups were compared with Student test or Mann-Whitney test, depending on results distribution. Results Besides Ki-67 expression, all tested wound healing parameters (including relative and absolute wound decrease and changes in circumference/area ratio) were statistically significant more favorable in experimental group. Conclusion ASC extract significantly supported standard chronic wound treatment. Due to small population of study the results should be considered preliminary, yet promising for further research.


Author(s):  
Raza ur Rehman Syed ◽  
Robin augustine ◽  
Alap ali Zahid ◽  
Anwarul Hasan

Non-healing chronic wounds are the key concern in type-2 diabetes that frequently leads to chronic infections, finally causing amputation of limbs, organs etc. Decrease in the proliferation and migration of cells such as keratinocytes and fibroblasts is the major reason for the development of such chronic diabetic wounds. Multiple evidences have shown that CTGF and reduced graphene oxide possesses angiogenic property and promote wound healing by promoting proliferation and migration of fibroblasts and keratinocytes cells.Conjugation of rGO with CTGF using EDC-NHS chemistry is a novel approach to accelerate the wound healing process. In the current work, we have developed a rGO/CTGF incorporated GelMA hydrogel dressing to improve wound healing by increasing proliferation and migration of cells as well as promoting formation of new blood vessels for increased supply of nutrients, oxygen and growth factors to wound area


Sign in / Sign up

Export Citation Format

Share Document