scholarly journals Growth Differentiation Factor-9 Promotes Fibroblast Proliferation and Migration in Keloids through the Smad2/3 Pathway

2016 ◽  
Vol 40 (1-2) ◽  
pp. 207-218 ◽  
Author(s):  
Zhaohua Jiang ◽  
Qingxiong Yu ◽  
Lingling Xia ◽  
Yi Zhang ◽  
Xiuxia Wang ◽  
...  

Background: Keloids are fibroproliferative scars that develop as a result of a dysregulated wound healing process; however, the molecular mechanisms of keloid pathogenesis remain unclear. Keloids are characterized by the ability to spread beyond the original boundary of the wound, and they represent a significant clinical challenge. Previous work from our group suggested that growth differentiation factor (GDF)-9 plays a role in the invasive behavior of keloids. Here, we examined the involvement of GDF-9 in keloid formation and spread and elucidated a potential underlying mechanism. Methods: The expression of GDF-9, cyclooxygenase (COX)-2, vascular epidermal growth factor (VEGF)-C, matrix metalloprotease (MMP)-2, MMP-9, transforming growth factor (TGF)-β1, and the related signaling pathway components in human keloid tissues or keloid fibroblasts (kFBs) was monitored by qRT-PCR and western blot. A series of overexpression and silencing experiments in normal and keloid fibroblasts were used to modify the expression of GDF-9. The effects of GDF-9 on kFB proliferation and migration were assessed using the CCK-8, cell cycle and scratch wound healing assays. Results: GDF-9 promotes fibroblast proliferation and migration. GDF-9 silencing in kFBs decreased cell proliferation, blocked cell cycle progression, downregulated the angiogenic markers COX-2 and VEGF-C, and downregulated MMP-2 and MMP-9 expression, whereas it had no effect on the levels of TGF-β1. GDF-9 silencing significantly inhibited Smad2 and Smad3 phosphorylation in kFBs. Conclusions: GDF-9 promotes the proliferation and migration of kFBs via a mechanism involving the Smad2/3 pathway.

2019 ◽  
Vol 17 (4) ◽  
pp. 379-387 ◽  
Author(s):  
Yan Sun ◽  
Xiao-li Liu ◽  
Dai Zhang ◽  
Fang Liu ◽  
Yu-jing Cheng ◽  
...  

Background:Intraplaque angiogenesis, the process of generating new blood vessels mediated by endothelial cells, contributes to plaque growth, intraplaque hemorrhage, and thromboembolic events. Platelet-derived Exosomes (PLT-EXOs) affect angiogenesis in multiple ways. The ability of miR-126, one of the best-characterized miRNAs that regulates angiogenesis, carried by PLT-EXOs to influence angiogenesis via the regulation of the proliferation and migration of endothelial cells is unknown. In this study, we aimed to investigate the effects of PLT-EXOs on angiogenesis by Human Umbilical Vein Endothelial Cells (HUVECs).Methods:We evaluated the levels of miR-126 and angiogenic factors in PLT-EXOs from Acute Coronary Syndrome (ACS) patients and healthy donors by real-time Polymerase Chain Reaction (PCR) and western blotting. We incubated HUVECs with PLT-EXOs and measured cell proliferation and migration with the Cell Counting Kit-8 assay and scratch assay, respectively. We also investigated the expression of miR-126 and angiogenic factors in HUVECs after exposure to PLT-EXOs by western blotting and real-time PCR.Results:PLT-EXOs from ACS patients contained higher levels of miR-126 and angiogenic factors, including Vascular Endothelial Growth Factor (VEGF), basic Fibroblast Growth Factor (bFGF), and Transforming Growth Factor Beta 1 (TGF-β1), than those from healthy donors (p<0.05). Moreover, the levels of exosomal miR-126 and angiogenic factors were increased after stimulation with thrombin (p<0.01). HUVEC proliferation and migration were promoted by treatment with activated PLT-EXOs (p<0.01); they were accompanied by the over-expression of miR-126 and angiogenic factors, including VEGF, bFGF, and TGF-β1 (p<0.01).Conclusion:Activated PLT-EXOs promoted the proliferation and migration of HUVECs, and the overexpression of miR-126 and angiogenic factors, thereby elucidating potential new therapeutic targets for intraplaque angiogenesis.


2015 ◽  
Vol 3 (9) ◽  
pp. 1291-1301 ◽  
Author(s):  
Jiranuwat Sapudom ◽  
Stefan Rubner ◽  
Steve Martin ◽  
Stephan Thoenes ◽  
Ulf Anderegg ◽  
...  

TGF-β1 dependent fibroblast behaviour in a wound healing context is mimicked by topologically and mechanically defined collagen matrices with fibronectin functionalization.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1595 ◽  
Author(s):  
Sungjoo Park ◽  
Eunsu Ko ◽  
Jun Hyoung Lee ◽  
Yoseb Song ◽  
Chang-Hao Cui ◽  
...  

Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jing Xie ◽  
Feng-xian Luo ◽  
Chong-ying Shi ◽  
Wei-wei Jiang ◽  
Ying-yan Qian ◽  
...  

Moringa oleifera Lam. (M. oleifera) is valuable plant distributed in many tropical and subtropical countries. It has a number of medicinal uses and is highly nutritious. M. oleifera has been shown to inhibit tumor cell growth, but this effect has not been demonstrated on prostate cancer cells. In this study, we evaluated the inhibitory effect of M. oleifera alkaloids (MOA) on proliferation and migration of PC3 human prostate cancer cells in vitro and in vivo. Furthermore, we elucidated the mechanism of these effects. The results showed that MOA inhibited proliferation of PC3 cells and induced apoptosis and cell cycle arrest. Furthermore, MOA suppressed PC3 cell migration and inhibited the expression of matrix metalloproteinases (MMP)-9. In addition, MOA significantly downregulated the expression of cyclooxygenase 2 (COX-2), β-catenin, phosphorylated glycogen synthase 3β, and vascular endothelial growth factor, and suppressed production of prostaglandin E2 (PGE2). Furthermore, FH535 (β-catenin inhibitor) and MOA reversed PGE2-induced PC3 cell proliferation and migration, and the effects of MOA and FH535 were not additive. In vivo experiments showed that MOA (150 mg/kg) significantly inhibited growth of xenograft tumors in mice, and significantly reduced the protein expression levels of COX-2 and β-catenin in tumor tissues. These results indicate that MOA inhibits the proliferation and migration, and induces apoptosis and cell cycle arrest of PC3 cells. Additionally, MOA inhibits the proliferation and migration of PC3 cells through suppression of the COX-2 mediated Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuai Wei ◽  
Wei Wang ◽  
Li Li ◽  
Hao-Ye Meng ◽  
Chun-Zhen Feng ◽  
...  

Abstract Background Vacuum sealing drainage (VSD) and epidermal growth factor (EGF) both play an important role in the treatment of wounds. This study aims to explore the effects of the combination of VSD and EGF on wound healing and the optimal concentration and time of EGF. Methods We tested the proliferation and migration capacity of HaCaT and L929 cells at different EGF concentrations (0, 1, 5, 10, and 100 ng/ml) and different EGF action times (2, 10, and 30 min). A full-thickness skin defect model was established using male, 30-week-old Bama pigs. The experiment included groups as follows: routine dressing change after covering with sterile auxiliary material (Control), continuous negative pressure drainage of the wound (VSD), continuous negative pressure drainage of the wound and injection of EGF 10 min followed by removal by continuous lavage (V + E 10 min), and continuous negative pressure drainage of the wound and injection of EGF 30 min followed by removal by continuous lavage (V + E 30 min). The wound healing rate, histological repair effect and collagen deposition were compared among the four groups. Results An EGF concentration of 10 ng/ml and an action time of 10 min had optimal effects on the proliferation and migration capacities of HaCaT and L929 cells. The drug dispersion effect was better than drug infusion after bolus injection effect, and the contact surface was wider. Compared with other groups, the V + E 10 min group promoted wound healing to the greatest extent and obtained the best histological score. Conclusions A recombinant human epidermal growth factor (rhEGF) concentration of 10 ng/ml can promote the proliferation and migration of epithelial cells and fibroblasts to the greatest extent in vitro. VSD combined with rhEGF kept in place for 10 min and then washed, can promote wound healing better than the other treatments in vivo.


Author(s):  
Yanping Yang ◽  
Wenkai Mao ◽  
Liming Wang ◽  
Lin Lu ◽  
Yunfeng Pang

Atherosclerosis is a major cause of cardiovascular disease, in which vascular smooth muscle cells (VSMCs) proliferation and migration play a vital role. Circular RNAs (circRNAs) have been reported to be correlated with the VSMCs function. Therefore, this study is designed to explore the role and mechanism of circRNA lipase maturation factor 1 (circLMF1) in Human aortic VSMCs (HASMCs). The microarray was used for detecting the expression of circLMF1 in proliferative and quiescent HASMCs. Levels of circLMF1, microRNA-125a-3p (miR-125a-3p), vascular endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1) were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, cell cycle progression, and migration were assessed by Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays, respectively. Western blot assay determined proliferating cell nuclear antigen (PCNA), Cyclin D1, matrix metalloproteinase (MMP2), osteopontin (OPN), VEGFA, and FGF1 protein levels. The possible interactions between miR-125a-3p and circLMF1, and miR-125a-3p and VEGFA or FGF1 were predicted by circbank or targetscan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), RNA pull-down assays. CircLMF1, VEGFA, and FGF1 were increased, and miR-125a-3p was decreased in platelet-derived growth factor-BB (PDGF-BB)-inducted HASMCs. Functionally, circLMF1 knockdown hindered cell viability, cell cycle progression, and migration in PDGF-BB-treated HASMCs. Mechanically, circLMF1 could regulate VEGFA or FGF1 expression through sponging miR-125a-3p. Our findings revealed that circLMF1 deficiency could inhibit cell viability, cell cycle progression, and migration of PDGF-BB stimulated atherosclerosis model partly through the miR-125a-3p/VEGFA or FGF1 axis, suggesting that targeting circLMF1 can be a feasible therapeutic strategy for atherosclerosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chun Yue ◽  
Zi Guo ◽  
Yufang Luo ◽  
Jingjing Yuan ◽  
Xinxing Wan ◽  
...  

Objective. Mesenchymal stem cells (MSCs) are considered a promising therapy for wound healing. Here, we explored the role of c-Jun in diabetic wound healing using human umbilical cord-derived MSCs (hUC-MSCs). Methods. Freshly isolated hUC-MSCs were subjected to extensive in vitro subcultivation. The cell proliferative and migratory capacities were assessed by the Cell Counting Kit-8 and scratch assays, respectively. c-Jun expression was evaluated by RT-PCR and western blot analysis. The function of c-Jun was investigated with lentivirus transduction-based gene silencing and overexpression. Diabetes mellitus was induced in SD rats on a high-glucose/fat diet by streptozocin administration. Wounds were created on the dorsal skin. The effects of c-Jun silencing and overexpression on wound closure by hUC-MSCs were examined. Reepithelialization and angiogenesis were assessed by histological and immunohistochemical analysis, respectively. Platelet-derived growth factor A (PDGFA), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) levels were determined by western blot analysis. Results. hUC-MSCs showed gradually decreased cell proliferation, migration, and c-Jun expression during subcultivation. c-Jun silencing inhibited cell proliferation and migration, while c-Jun overexpression enhanced proliferation but not migration. Compared with untransduced hUC-MSCs, local subcutaneous injection of c-Jun-overexpressing hUC-MSCs accelerated wound closure, enhanced angiogenesis and reepithelialization at the wound bed, and increased PDGFA and HGF levels in wound tissues. Conclusion. c-Jun overexpression promoted hUC-MSC proliferation and migration in vitro and accelerated diabetic wound closure, reepithelization, and angiogenesis by hUC-MSCs in vivo. These beneficial effects of c-Jun overexpression in diabetic wound healing by hUC-MSCs were at least partially mediated by increased PDGFA and HGF levels in wound tissues.


Author(s):  
Byungcheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Sung Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes, and significantly increased the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


Sign in / Sign up

Export Citation Format

Share Document