EXTRACORTICAL CEREBROSPINAL FLUID IN NORMAL HUMAN FETUSES

PEDIATRICS ◽  
1958 ◽  
Vol 21 (3) ◽  
pp. 403-408
Author(s):  
Jonathan T. Lanman ◽  
Yjrö Partanen ◽  
Sven Ullberg ◽  
John Lind

A layer of cerebrospinal fluid surrounds the developing brain of normal human fetuses. The layer was found to occupy 13 to 26% of the intracranial space. Convolutions appeared in the hemispheres while this layer was still present. Neither growth of the skull nor the appearance of cortical convolutions is secondary to pressure from growth of the brain into a confined cranial space.

Author(s):  
Bruce Wetzel ◽  
Robert Buscho ◽  
Raphael Dolin

It has been reported that explants of human fetal intestine can be maintained in culture for up to 21 days in a viable condition and that these organ cultures support the growth of a variety of known viral agents responsible for enteric disease. Scanning electron microscopy (SEM) has been undertaken on several series of these explants to determine their appearance under routine culture conditions.Fresh specimens of jejunum obtained from normal human fetuses were washed, dissected into l-4mm pieces, and cultured in modified Leibowitz L-15 medium at 34° C as previously described. Serial specimens were fixed each day in 3% glutaraldehyde for 90 minutes at room temperature, rinsed, dehydrated, and dried by the CO2 critical point method in a Denton DCP-1 device. Specimens were attached to aluminum stubs with 3M transfer tape No. 465, and one sample on each stub was carefully rolled along the adhesive such that villi were broken off to expose their interiors.


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


1990 ◽  
Vol 122 (2) ◽  
pp. 191-200 ◽  
Author(s):  
C. G. J. Sweep ◽  
Margreet D. Boomkamp ◽  
István Barna ◽  
A. Willeke Logtenberg ◽  
Victor M. Wiegant

Abstract The effect of intracerebroventricular (lateral ventricle) administration of arginine8-vasopressin (AVP) on the concentration of β-endorphin immunoreactivity in the cerebrospinal fluid obtained from the cisterna magna was studied in rats. A decrease was observed 5 min following injection of 0.9 fmol AVP. No statistically significant changes were found 5 min after intracerebroventricular treatment of rats with 0.09 or 9 fmol. The decrease induced by 0.9 fmol AVP was of short duration and was found 5 min after treatment but not 10 and 20 min. Desglycinamide9-AVP (0.97 fmol), [pGlu4, Cyt6]-AVP-(4–9) (1.44 fmol), Nα-acetyl-AVP (0.88 fmol), lysine8-vasopressin (0.94 fmol) and oxytocin (1 fmol) when intracerebroventricularly injected did not affect the levels of β-endorphin immunoreactivity in the cerebrospinal fluid 5 min later. This suggests that the intact AVP-(1–9) molecule is required for this effect. Intracerebroventricular pretreatment of rats with the vasopressin V1-receptor antagonist d(CH2)5Tyr(Me)AVP (8.63 fmol) completely blocked the effect of AVP (0.9 fmol). In order to investigate further the underlying mechanism, the effect of AVP on the disappearance from the cerebrospinal fluid of exogenously applied β-endorphin was determined. Following intracerebroventricular injection of 1.46 pmol camel β-endorphin-(1–31), the β-endorphin immunoreactivity levels in the cisternal cerebrospinal fluid increased rapidly, and reached peak values at 10 min. The disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid then followed a biphasic pattern with calculated half-lifes of 28 and 131 min for the initial and the terminal phase, respectively. Treatment of rats with AVP (0.9 fmol; icv) during either phase (10, 30, 55 min following intracerebroventricular administration of 1.46 pmol β-endorphin-(1–31)) significantly enhanced the disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid. The data suggest that vasopressin plays a role in the regulation of β-endorphin levels in the cerebrospinal fluid by modulating clearance mechanisms via V1-receptors in the brain.


1986 ◽  
Vol 71 (6) ◽  
pp. 749-753 ◽  
Author(s):  
J. E. Maddison ◽  
D. Yau ◽  
P. Stewart ◽  
G. C. Farrell

1. Cerebrospinal fluid (CSF) γ-aminobutyric acid (GABA) levels were measured in a dog model of spontaneous chronic portosystemic encephalopathy. 2. Dogs with congenital portacaval shunts (intra- or extra-hepatic) develop neurological features of abnormal psychomotor behaviour and depressed consciousness that are consistent with the symptoms of chronic portosystemic encephalopathy in humans. In the five dogs studied, plasma ammonia was elevated, as was CSF tryptophan, both usual biochemical abnormalities in portosystemic encephalopathy. 3. CSF levels of GABA in five dogs with portosystemic encephalopathy (100 ± 13 pmol/ml) were not significantly different from those in five control dogs (96 ± 14 pmol/ml). CSF levels of GABA were not altered after ammonia infusion. 4. If enhanced GABA-ergic neurotransmission, due to influx of gut-derived GABA into the brain, is responsible for the pathophysiology of chronic portosystemic encephalopathy in this model, it is not reflected by increased levels of GABA in CSF.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liam M. Koehn ◽  
Katarzyna M. Dziegielewska ◽  
Mark D. Habgood ◽  
Yifan Huang ◽  
Norman R. Saunders

Abstract Background Adenosine triphosphate binding cassette transporters such as P-glycoprotein (PGP) play an important role in drug pharmacokinetics by actively effluxing their substrates at barrier interfaces, including the blood-brain, blood-cerebrospinal fluid (CSF) and placental barriers. For a molecule to access the brain during fetal stages it must bypass efflux transporters at both the placental barrier and brain barriers themselves. Following birth, placental protection is no longer present and brain barriers remain the major line of defense. Understanding developmental differences that exist in the transfer of PGP substrates into the brain is important for ensuring that medication regimes are safe and appropriate for all patients. Methods In the present study PGP substrate rhodamine-123 (R123) was injected intraperitoneally into E19 dams, postnatal (P4, P14) and adult rats. Naturally fluorescent properties of R123 were utilized to measure its concentration in blood-plasma, CSF and brain by spectrofluorimetry (Clariostar). Statistical differences in R123 transfer (concentration ratios between tissue and plasma ratios) were determined using Kruskal-Wallis tests with Dunn’s corrections. Results Following maternal injection the transfer of R123 across the E19 placenta from maternal blood to fetal blood was around 20 %. Of the R123 that reached fetal circulation 43 % transferred into brain and 38 % into CSF. The transfer of R123 from blood to brain and CSF was lower in postnatal pups and decreased with age (brain: 43 % at P4, 22 % at P14 and 9 % in adults; CSF: 8 % at P4, 8 % at P14 and 1 % in adults). Transfer from maternal blood across placental and brain barriers into fetal brain was approximately 9 %, similar to the transfer across adult blood-brain barriers (also 9 %). Following birth when placental protection was no longer present, transfer of R123 from blood into the newborn brain was significantly higher than into adult brain (3 fold, p < 0.05). Conclusions Administration of a PGP substrate to infant rats resulted in a higher transfer into the brain than equivalent doses at later stages of life or equivalent maternal doses during gestation. Toxicological testing of PGP substrate drugs should consider the possibility of these patient specific differences in safety analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


2020 ◽  
pp. 1-24
Author(s):  
Conrad N. Trumbore

Amyloid-β (Aβ) and tau oligomers have been identified as neurotoxic agents responsible for causing Alzheimer’s disease (AD). Clinical trials using Aβ and tau as targets have failed, giving rise to calls for new research approaches to combat AD. This paper provides such an approach. Most basic AD research has involved quiescent Aβ and tau solutions. However, studies involving laminar and extensional flow of proteins have demonstrated that mechanical agitation of proteins induces or accelerates protein aggregation. Recent MRI brain studies have revealed high energy, chaotic motion of cerebrospinal fluid (CSF) in lower brain and brainstem regions. These and studies showing CSF flow within the brain have shown that there are two energetic hot spots. These are within the third and fourth brain ventricles and in the neighborhood of the circle of Willis blood vessel region. These two regions are also the same locations as those of the earliest Aβ and tau AD pathology. In this paper, it is proposed that cardiac systolic pulse waves that emanate from the major brain arteries in the lower brain and brainstem regions and whose pulse waves drive CSF flows within the brain are responsible for initiating AD and possibly other amyloid diseases. It is further proposed that the triggering of these diseases comes about because of the strengthening of systolic pulses due to major artery hardening that generates intense CSF extensional flow stress. Such stress provides the activation energy needed to induce conformational changes of both Aβ and tau within the lower brain and brainstem region, producing unique neurotoxic oligomer molecule conformations that induce AD.


1993 ◽  
Vol 16 (3) ◽  
pp. 517-519 ◽  
Author(s):  
H. J. Blom ◽  
R. A. Wevers ◽  
A. Verrips ◽  
M. T. W. B. TePoele-Pothoff ◽  
J. M. F. Trijbels

Sign in / Sign up

Export Citation Format

Share Document