scholarly journals Extracellular Water to Total Body Water Ratio in Septic Shock Patients Receiving Protocol-Driven Resuscitation Bundle Therapy

2021 ◽  
Vol 10 (13) ◽  
pp. 2917
Author(s):  
Bora Chae ◽  
Yo Sep Shin ◽  
Seok-In Hong ◽  
Sang Min Kim ◽  
Youn-Jung Kim ◽  
...  

(1) Bio-electrical impedance analysis (BIA) is a rapid, simple, and noninvasive tool for evaluating the metabolic status and for assessing volume status in critically ill patients. Little is known, however, the prognostic value of body composition analysis in septic shock patients. This study assessed the association between parameters by body composition analysis and mortality in patients with septic shock in the emergency department (ED). (2) Data were prospectively collected on adult patients with septic shock who underwent protocol-driven resuscitation bundle therapy between December 2019 and January 2021. The primary outcome was 30-day mortality. (3) The study included 261 patients, the average ratio of extracellular water (ECW) to total body water (TBW) was significantly higher in non-survivors than in survivors (0.414 vs. 0.401, p < 0.001). Multivariate analysis showed that ECW/TBW ≥ 0.41 (odds ratio (OR), 4.62; 95% confidence interval (CI), 2.31–9.26, p < 0.001), altered mental status (OR, 2.88; 95% CI, 1.28–6.46, p = 0.010), and lactate level (OR, 1.24; 95% CI, 1.12–1.37, p < 0.001) were significantly associated with 30-day mortality in patients with septic shock. (4) ECW/TBW ≥ 0.41 may be associated with 30-day mortality in patients with septic shock receiving protocol-driven resuscitation bundle therapy in the ED.

2021 ◽  
Author(s):  
Bora Chae ◽  
Yo Sep Shin ◽  
Seok-In Hong ◽  
Sang Min Kim ◽  
Youn-Jung Kim ◽  
...  

Abstract Background: Bio-electrical impedance analysis (BIA) is a rapid, simple, and noninvasive tool for assessing volume status in various diseases. Body composition analysis using BIA may identify factors associated with poor outcomes in critically ill patients. Little is known, however, about the relationship between the results of body composition analysis in the emergency department (ED) and mortality in septic shock patients.Objectives: This study assessed the association between parameters identified by body composition analysis and mortality in patients with septic shock who underwent protocol-driven resuscitation bundle therapy in the ED.Methods: Data were prospectively collected on adult patients with septic shock who underwent protocol-driven resuscitation bundle therapy between December 2019 and December 2020. Body composition was determined in the ED using BIA with the patient in the supine position. Septic shock was defined by sepsis-3 criteria, and the primary outcome was 30-day mortality. Results: The study included 218 patients, of whom 58 (26.6%) died within 30 days. The mean time from ED admission to the measurement of body composition was 5.4 hours. The average ratio of extracellular water (ECW) to total body water (TBW) was significantly higher in non-survivors than in survivors (0.412 vs. 0.400, p=0.001). The optimal ECW/TBW cutoff for predicting 30-day mortality was 0.40, with mortality rates being significantly higher in patients with ECW/TBW >0.4 than in patients with ECW/TBW≦0.4 (37.8% vs. 17.5%, p=0.001). Multivariate analysis showed that ECW/TBW >0.4 (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.05–4.23, p = 0.036), active cancer (OR, 2.39; 95% CI, 1.06–5.38, p=0.036), prothrombin time (OR, 2.77; 95% CI, 1.29–5.93, p=0.009), and initial lactate level (OR, 1.15; 95% CI, 1.03–1.28, p=0.010) were significantly associated with 30-day mortality.Conclusions: The ECW/TBW>0.40 is the only body composition parameter associated with 30-day mortality in patients with septic shock.


PEDIATRICS ◽  
1961 ◽  
Vol 28 (2) ◽  
pp. 169-181
Author(s):  
B. Friis-Hansen

During growth of infants and children, certain characteristic changes are found. A rapid decrease of the relative volumes of total body water and of extracellular water occurs during the first year of life, followed by a smaller decrease of volume of extracellular water later in childhood. At the same time an increased heterogeneity of the extracellular water takes place. On the other hand, the volume of intracellular water increases a little during the first months of life and remains more or less constant from then on. Formulas and nomograms from which these body water compartments can be predicted are presented. Finally, data on the corresponding changes in the total body water and in body specific gravity are discussed.


2015 ◽  
Vol 9 (2) ◽  
pp. 57-67 ◽  
Author(s):  
Ivana Kinkorová ◽  
Matěj Vrba

The aim of our study was the measurement of selected anthropometric variables, respectively determining somatotype, body composition analysis of students Military Department (MD) at UK FTVS in Prague and compared to similar studies. The group consisted of 22 probands, men ranging in age from 19–27 years (mean age = 22,9 ± 2,6 years, height = 179,9 ± 6,0 cm, weight = 76,8 ± 7,0 kg, BMI = 23,8 ± 1,5 kg.m–2). In terms of measured average somatotype (1,7 – 7,3 – 2,5), the students MD have very good preconditions for general physical fitness. We used BIA-Tanita MC 980 for the body composition analysis (whole body and segmental analysis). The students MD showed a high proportion of lean body mass (70,5 ± 6,1 kg) and low proportion of fat mass (8,3 ± 3,0 %). The authors emphasize the importance of monitoring and other parameters of body composition, e.g. total body water (TBW), extracellular water (ECW), intracellular water (ICW), segmental analysis of muscle mass and body fat.


PEDIATRICS ◽  
1962 ◽  
Vol 29 (6) ◽  
pp. 883-889
Author(s):  
Wesley M. Clapp ◽  
L. Joseph Butterfield ◽  
Donough O'Brien

Normal values for both total body water and extracellular water have been determined in 86 premature infants aged 1 to 90 days and weighing 940 to 2,435 gm, with use of the techniques of deuterium oxide and bromide dilution. Nine full-term infants aged 1 to 6 days and weighing 2,590 to 4,985 gm were similarly studied. Nine infants with the respiratory distress syndrome and eight infants of toxemic mothers studied in the first 24 hours of life showed no significant difference in their body water compartments in comparison to a control group of normal infants matched for age and weight. Seven infants of diabetic mothers studied in the first 24 hours of life showed a significant decrease in total body water, expressed as percentage of body weight, with a normal intracellular to extracellular water ratio. These data indirectly support other evidence that there is an increase in body fat in these infants at birth. See Table in the PDF file


2013 ◽  
Vol 48 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Dejan Reljic ◽  
Eike Hässler ◽  
Joachim Jost ◽  
Birgit Friedmann-Bette

Context Dehydration is assumed to be a major adverse effect associated with rapid loss of body mass for competing in a lower weight class in combat sports. However, the effects of such weight cutting on body fluid balance in a real-life setting are unknown. Objective To examine the effects of 5% or greater loss of body mass within a few days before competition on body water, blood volume, and plasma volume in elite amateur boxers. Design Case-control study. Setting Sports medicine laboratory. Patients or Other Participants Seventeen male boxers (age = 19.2 ± 2.9 years, height = 175.1 ± 7.0 cm, mass = 65.6 ± 9.2 kg) were assigned to the weight-loss group (WLG; n = 10) or the control group (CON; n = 7). Intervention(s) The WLG reduced body mass by restricting fluid and food and inducing excessive sweat loss by adhering to individual methods. The CON participated in their usual precompetition training. Main Outcome Measure(s) During an ordinary training period (t-1), 2 days before competition (t-2), and 1 week after competition (t-3), we performed bioelectrical impedance measurements; calculated total body water, intracellular water, and extracellular water; and estimated total hemoglobin mass (tHbmass), blood volume, and plasma volume by the CO-rebreathing method. Results In the WLG, the loss of body mass (5.6% ± 1.7%) led to decreases in total body water (6.0% ± 0.9%), extracellular water (12.4% ± 7.6%), tHbmass (5.3% ± 3.8%), blood volume (7.6% ± 2.1%; P &lt; .001), and plasma volume (8.6% ± 3.9%). The intracellular water did not change (P &gt; .05). At t-3, total body water, extracellular water, and plasma volume had returned to near baseline values, but tHbmass and blood volume still were less than baseline values (P &lt; .05). In CON, we found no changes (P &gt; .05). Conclusions In a real-life setting, the loss of approximately 6% body mass within 5 days induced hypohydration, which became evident by the decreases in body water and plasma volume. The reduction in tHbmass was a surprising observation that needs further investigation.


Author(s):  
Ikuro Matsuba ◽  
Masahiro Takihata ◽  
Masahiko Takai ◽  
Hajime Maeda ◽  
Akira Kubota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document