Fixed Drug Combinations and the Displacement of Bilirubin from Albumin

PEDIATRICS ◽  
1971 ◽  
Vol 48 (1) ◽  
pp. 139-141 ◽  
Author(s):  
D. Schiff ◽  
C. Chan ◽  
L. Stern

Silverman and associates,1 reported that the use of sulfisoxazole (Gantrisin) in premature infants resulted in the occurrence of kernicterus at low levels of serum bilirubin. Odell2 subsequently demonstrated that sulfisoxazole displaces bilirubin from its albumin binding sites in vitro, thereby making available lipid soluble free bilirubin capable of penetrating the central nervous system. This effect of sulfisoxazole in producing kernicterus has been confirmed experimentally in vivo in rats.3 Odell4 and Khanna, et al.5 have demonstrated a similar but quantitatively even greater bilirubin displacing effect of caffeine sodium benzoate, a drug still recommended by some as a respiratory stimulant for the newborn.

PEDIATRICS ◽  
1972 ◽  
Vol 49 (6) ◽  
pp. 916-918
Author(s):  
Leo Stern

Unlike its conjugated (direct acting) counterpart, unconjugated (indirect acting) bilirubin is insoluble in water, but highly soluble in lipids. Hence, it tends to diffuse out of plasma into the lipid-rich CNS with resultant kernicterus. This does not occur when unconjugated bilirubin is bound to albumin, as the complex is too large for diffusion. The production of kernicterus thus involves the increase of free, unbound, unconjugated bilirubin in plasma, either by dissociation from its albumin binding sites or by the introduction of one or more anions which compete preferentially for a common or shared site, thus displacing the bilirubin from its albumin bond. FACTORS AFFECTING BINDING Lowering the pH promotes bilirubin-albumin dissociation,1 and acidosis has thus been implicated as a factor in kernicterus occurring at low levels of serum bilirubin.2-5 In addition, competition for bilirubin binding sites is exhibited by a number of endogenously occurring substances as well as exogenously administered agents. Both hematin (increased in hemolytic states) and the nonesterified fatty acids (increased under conditions of both hypothermia6 and hypoglycemia7 are capable of displacing bilirubin from its albumin binding sites. In addition, a number of drugs, among which sulfisoxazole (Gantrisin) is the most widely known in view of both its clinical8 and experimental9 production of kernicterus in this fashion, are capable of causing similar displacement in vitro. Among the techniques employed to demonstrate an increase in free bilirubin is the measurement of displacement of spectral curves.10,7 The technique depends on a difference in absorbance of free (420 to 440 nm) versus bound (460 to 465 nm) bilirubin, with changes in the shapes of the curves as the amounts of free and bound bilirubin are altered.


1996 ◽  
Vol 199 (7) ◽  
pp. 1555-1561 ◽  
Author(s):  
M Mészáros ◽  
D B Morton

A previous study, using subtractive hybridization, identified five genes (esr16, esr20, Mng10, Mng14 and tps9) whose transcripts were up-regulated prior to metamorphosis in Manduca sexta nervous tissue. The developmental time points chosen for subtraction suggested that expression could be coordinately regulated and should be negatively regulated by the steroid hormones, the ecdysteroids. In the present paper, we present an analysis of the expression patterns of these five genes, using reverse transcription-polymerase chain reaction (RT-PCR), at various times during development and assess the effects of 20-hydroxyecdysone and cycloheximide on their expression in vitro. This analysis revealed that with the exception of esr20 all transcripts were detectable at all times and that all but one of the genes were up-regulated in vivo and in vitro in the absence or in the presence of low levels of the ecdysteroids. In the absence of ecdysteroids, cycloheximide blocked the accumulation of only two transcripts, esr16 and esr20. These results reveal a much more complex pattern of gene expression in the central nervous system prior to metamorphosis than previously imagined.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


1976 ◽  
Vol 230 (4) ◽  
pp. 1101-1107 ◽  
Author(s):  
R Spector

Total thiamine (free thiamine and thiamine phosphates) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the CSF was measured in rabbits. In vivo, total thiamine transport into CSF, choroid plexus, and brain was saturable. At the normal plasma total thiamine concentration, less than 5% of total thiamine entry into CSF, choroid plexus, and brain was by simple diffusion. The relative turnovers of total thiamine in choroid plexus, whole brain, and CSF were 5, 2, and 14% per h, respectively, when measured by the penetration of 35S-labeled thiamine injected into blood. From the CSF, clearance of [35S]thiamine relative to mannitol was not saturable after the intraventricular injection of various concentrations of thiamine. However, a portion of the [35S]thiamine cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [35S]thiamine against a concentration gradient by an active saturable process that did not depend on pyrophosphorylation of the [35S]thiamine. The [35S]thiamine accumulated within the choroid plexus in vitro was readily released. These results were interpreted as showing that the entry of total thiamine into the brain and CSF from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


1999 ◽  
Vol 43 (5) ◽  
pp. 1091-1097 ◽  
Author(s):  
Hideki Kita ◽  
Hirotami Matsuo ◽  
Hitomi Takanaga ◽  
Junichi Kawakami ◽  
Koujirou Yamamoto ◽  
...  

ABSTRACT We investigated the correlation between an in vivo isobologram based on the concentrations of new quinolones (NQs) in brain tissue and the administration of nonsteroidal anti-inflammatory drugs (NSAIDs) for the occurrence of convulsions in mice and an in vitro isobologram based on the concentrations of both drugs for changes in the γ-aminobutyric acid (GABA)-induced current response in Xenopus oocytes injected with mRNA from mouse brains in the presence of NQs and/or NSAIDs. After the administration of enoxacin (ENX) in the presence or absence of felbinac (FLB), ketoprofen (KTP), or flurbiprofen (FRP), a synergistic effect was observed in the isobologram based on the threshold concentration in brain tissue between mice with convulsions and those without convulsions. The three NSAIDs did not affect the pharmacokinetic behavior of ENX in the brain. However, the ENX-induced inhibition of the GABA response in the GABAA receptor expressed in Xenopus oocytes was enhanced in the presence of the three NSAIDs. The inhibition ratio profiles of the GABA responses for both drugs were analyzed with a newly developed toxicodynamic model. The inhibitory profiles for ENX in the presence of NSAIDs followed the order KTP (1.2 μM) > FRP (0.3 μM) > FLB (0.2 μM). These were 50- to 280-fold smaller than those observed in the absence of NSAIDs. The inhibition ratio (0.01 to 0.02) of the GABAA receptor in the presence of both drugs was well-fitted to the isobologram based on threshold concentrations of both drugs in brain tissue between mice with convulsions and those without convulsions, despite the presence of NSAIDs. In mice with convulsions, the inhibitory profiles of the threshold concentrations of both drugs in brain tissue of mice with convulsions and those without convulsions can be predicted quantitatively by using in vitro GABA response data and toxicodynamic model.


2021 ◽  
Vol 10 (3) ◽  
pp. 109-120
Author(s):  
A. I. Mosiagina ◽  
A. V. Morgun ◽  
A. B. Salmina

There is growing research focusing on endothelial cells as separate units of the blood-brain barrier (BBB), and on the complex relationships between different types of cells within a neurovascular unit. To conduct this type of studies, researches use vastly different in vitro BBB models. The main objective of such models is to study the BBB permeability for different molecules, and to advance the current level of understanding the mechanisms of disease and to develop methods of targeted therapy for the central nervous system. The analysis of the existing Abstract in vitro BBB models and their advantages/disadvantages was conducted using the clinical trial data obtained in Russian/foreign countries. In this review, the authors highlight the most relevant assessment parameters and propose a unified classification of in vitro BBB models. According to the performed analysis, there is a tendency to move from 2D BBB models based on semipermeable inserts to 3D BBB spheroid and microfluidic organ-on-chip models. Moreover, the use of human induced pluripotent stem cells instead of animal primary cells will make it possible to reliably scale the results obtained in vitro to conditions in vivo.


1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2018 ◽  
Vol 205 (5-6) ◽  
pp. 372-395 ◽  
Author(s):  
Jonathan M. Zuidema ◽  
Ryan J. Gilbert ◽  
Manoj K. Gottipati

Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.


Sign in / Sign up

Export Citation Format

Share Document