scholarly journals Intra-annual and long-periodic components in the changes of precipitation over the Antarctic Peninsula and their possible causes

2021 ◽  
Vol 30 (3) ◽  
pp. 480-490
Author(s):  
Serhii V. Klok ◽  
Anatolii O. Kornus

In order to identify and study the main mechanisms of the formation of atmospheric precipitation, in the article the monthly and annual amounts of precipitation were analyzed from the observations results at Vernadsky, Bellingshausen and Grytviken stations. For the last station, a small linear trend of precipitation increase was detected, while at Vernadsky and Bellingshausen station it is practically absent. At the next stage of the study, the characteristics of intra-annual component of the precipitation variability for these stations were obtained. In the annual course, the component of precipitation variability is represented by 3 peaks – March, July and October (at Bellingshausen station March and July only), with a well-pronounced 4-year periodicity. However, data from Vernadsky station indicates a decrease of the seasonal component in time, at Grytviken station the seasonal component is stable, while at Bellingshausen station is increasing of the seasonal component in time. The analysis of long-period components of the precipitation variability of was carried out on the remains of the data obtained after the analysis of the intra-annual component. For the long-period component of precipitation variability at Vernadsky station, five statistically significant harmonics were obtained, which are reflected in periods of 6.8, 2.4, 4.0, 5.1, and 5.3 years. For Grytviken and Bellingshausen stations, 4 statistically significant harmonics were obtained, the periods of which are 4.2, 0.8, 1.7, 8.9 years and 1.5, 2.0, 2.8, 0.2 years, respectively. Today, the main phases of solar activity are well known, which are about 11 years old. The long-period components of precipitation variability obtained in the work for the stations under consideration (to 10.3, 12 and 34.1 years) are identical (close) to the mentioned phase of solar activity. This allowed the authors to draw preliminary conclusions about the influence of solar activity on the conditions for the formation of precipitation in the region under study. However, direct correlation analysis did not confirm this, as in the case of the El Niño influence.

2021 ◽  
Author(s):  
Annika Seppälä ◽  
Emily Gordon ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley Walker

<p>We present the impact of the so-called energetic particle precipitation (EPP), part of natural solar forcing on the atmosphere, on polar stratospheric NO<sub>x</sub>, ozone, and chlorine chemistry in the Antarctic springtime, using multi-satellite observations covering the overall period of 2005–2017. We find consistent ozone increases when high solar activity occurs during years with easterly phase of the quasi biennial oscillation. These ozone enhancements are also present in total O<sub>3</sub> column observations. We find consistent decreases in springtime active chlorine following winters of elevated solar activity. Further analysis shows that this is accompanied by increase of chemically inactive chlorine reservoir species, explaining the observed ozone increase. This provides the first observational evidence supporting the previously proposed mechanism relating to EPP modulating chlorine driven ozone loss. Our findings suggest that solar activity via EPP has played an important role in modulating Antarctic ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective and catalytic ozone destruction by EPP produced NO<sub>x</sub> will likely become a major contributor to Antarctic ozone loss.</p>


2015 ◽  
Vol 9 (1) ◽  
pp. 399-409 ◽  
Author(s):  
Q. Shu ◽  
Z. Song ◽  
F. Qiao

Abstract. The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth system models with historical simulation, are used. For the Antarctic, multi-model ensemble mean (MME) results can give good climatology of sea ice extent (SIE), but the linear trend is incorrect. The linear trend of satellite-observed Antarctic SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7 CMIP5 models show increasing trends, and the linear trend of CMIP5 MME is negative with the value of −3.36 (±0.15) × 105 km2 decade−1. For the Arctic, both climatology and linear trend are better reproduced. Sea ice volume (SIV) is also evaluated in this study, and this is a first attempt to evaluate the SIV in all CMIP5 models. Compared with the GIOMAS and PIOMAS data, the SIV values in both the Antarctic and the Arctic are too small, especially for the Antarctic in spring and winter. The GIOMAS Antarctic SIV in September is 19.1 × 103 km3, while the corresponding Antarctic SIV of CMIP5 MME is 13.0 × 103 km3 (almost 32% less). The Arctic SIV of CMIP5 in April is 27.1 × 103 km3, which is also less than that from PIOMAS SIV (29.5 × 103 km3). This means that the sea ice thickness simulated in CMIP5 is too thin, although the SIE is fairly well simulated.


2007 ◽  
Vol 31 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Qiang Li ◽  
Jian Wu ◽  
Zheng-wen Xu ◽  
Jun Wu

J . E. Smith. May I ask, at the outset of our discussion of this morning’s papers, whether there is any evidence of long- or short-term secular changes of climate in the Signy Island area? G. de Q. Robin. J. A. Heap, in preparing an ice atlas of the Antarctic seas, drew upon the long period of meteorological records from the Argentine station ‘Orcadas’ on Laurie Island, South Orkney Island, and from the British station at Grytviken, South Georgia. He was able to show that in the late 1920s there were several years with mean annual temperatures 1 or 2 degC below average, while in the 1950-60 period moderate fluctuations in climate could be associated with fluctuations in the pack ice. M. W. Holdgate. Because of the lack of suitable ‘indicator species’ in the land flora, pollen analysis from the Antarctic zone is not likely to help in this problem. However, some evidence of climatic change may be derived from the fluctuating fortunes of the small elephant seal population at Signy Island. When first studied by R. M. Laws in 1948 this was producing 80 to 100 pups annually: latterly numbers have fallen off dramatically and in some seasons only four or five have been born. This is a marginal population of a species not penetrating deeply within the ice zone, and hence will probably be a good indicator of changing climate and ice conditions.


2019 ◽  
Vol 5 (2) ◽  
pp. 113-115
Author(s):  
Галина Кушнаренко ◽  
Galina Kushnarenko ◽  
Ольга Яковлева ◽  
Olga Yakovleva ◽  
Галина Кузнецова ◽  
...  

We analyze the influence of geomagnetic disturbances on the electron density Ne at Norilsk ionospheric station (69° N; 88° E) at F1-layer heights (120–200 km). For the analysis, we have selected 25 moderate and weak geomagnetic disturbances for two seasons — spring and fall — of 2003–2014. Using the Ne values obtained from measurements made with the Norilsk digisonde during this period, we analyze Ne variations during geomagnetic disturbances in spring and fall for a long period of time. We determine the effect of spring-fall asymmetry occurring in all solar activity phases and manifesting itself in a significant decrease in the electron density during the main phase of fall storms at all heights in comparison with quiet days: up to 2.6 times at a height of 200 km and slightly less at lower heights. This phenomenon is not observed during spring disturbances: Ne variations are much weaker.


Author(s):  
J. Guo ◽  
K. Wang ◽  
Z. Zeng ◽  
L. Li ◽  
J. Liu ◽  
...  

Abstract. The lithospheric mantle structure of the Antarctic continent is of great significance of studying the polymerization and fragmentation mechanism of Gondwana and the plate movement law. Long-period magnetotelluric (LMT) is an important method to study the electrical structure of earth crust and mantle. However, been limited by the bad natural environment and logistics supply difficulties, there is no LMT record of Antarctica before. In 2018, China's 34th Antarctic scientific expedition carried out the LMT survey at the eastern edge of the Antarctic continent with a frequency range of 0.00015 Hz to 0.1 Hz. After the processing and analysis, we get three points as fellow: (1) The lithospheric mantle of Antarctica has a three-dimensional resistivity structure; (2) There are low resistivity regions in the Antarctic mantle, which may be related to thermal activity. (3) It is possible to carry out LMT measurements in eastern Antarctic and more can be done in the future.


2020 ◽  
Author(s):  
Gennadi Milinevsky ◽  
Asen Grytsai ◽  
Oleksandr Evtushevsky ◽  
Yury Yampolsky ◽  
Andrew Klekociuk ◽  
...  

<p>Ozone content in the terrestrial atmosphere is dependent on chemical and dynamical factors including catalytic destruction under the influence of chlorine and bromine, Brewer–Dobson circulation, and large-scale atmospheric waves. The appearance of ozone molecules in the stratosphere is caused by solar ultraviolet radiation as well. Therefore solar activity variations can influence ozone content. The 11-year solar cycle had been earlier identified in the upper stratosphere. Satellite ozone observations were begun from the 1970s are almost continuous from 1979 including the vertical ozone distribution, in particular with the use of Solar Backscattered UltraViolet (SBUV) instruments. These data cover the troposphere and stratosphere layers, from the surface to near 50 km. Vertical ozone distribution over the Ukrainian Antarctic station Akademik Vernadsky (65.25°S, 64.27°W) and in the corresponding latitudinal range 60–65°S is studied in this work with the following analysis of possible solar activity display in other latitudinal belts. Sunspot numbers have been considered as the simplest characteristics of solar activity. We have considered SBUV yearly data paying main attention to the time range from 1979 when the measurements are most reliable. Periodicity in the series of ozone layer content has been studied with use of wavelet transform. Processing of the SBUV data over Vernadsky has shown a dominating period near 10–11 years at the heights 18–31 km. In the troposphere and lower stratosphere, this period is unclear. A similar situation is observed above 31 km indicating the upper altitudinal threshold in the presence of the 10–11-year periodicity in the ozone data. The solar cycle influence on the ozone vertical distribution in the Antarctic region has been studied. From our analysis, the solar cycle plays an important role in the decadal variability of the mid-stratospheric ozone over Vernadsky Station with decrease of the effect both in the troposphere – lower stratosphere and in the upper stratosphere. A similar analysis is also realized for zonal mean ozone at the 60–65°S latitudes belt and for the region of zonal ozone maximum (Casey), where the solar cycle was indicated at the heights 31–37 km. Thus, zonal asymmetry in the heights of the maximum solar cycle effect in the Antarctic ozone exists. Periods close to 11 years are observed in the lower stratosphere of equatorial latitudes exhibiting seasonal dependency. At altitudes, 25–30 km, the southern stratosphere has more evident signs of solar cycle periods than the northern one. The summer upper stratosphere with a high flux of direct solar radiation is also a region with prominent quasi-11 year periods. In sum, three main regions with solar activity influence (tropical lower stratosphere, west Antarctic middle stratosphere, and east Antarctic upper stratosphere) are identified. The asymmetry between solar cycle influence (i) in the northern and southern hemisphere mid-stratosphere and (ii) zonal ozone maximum and minimum over Antarctica is denoted for the first time.</p><p>This work was partly supported by the project 19BF051-08 Taras Shevchenko National University of Kyiv and by the International Center of Future Science, Jilin University.</p>


1995 ◽  
Vol 13 (3) ◽  
pp. 285-295 ◽  
Author(s):  
N. M. Gavrilov ◽  
A. H. Manson ◽  
C. E. Meek

Abstract. Saskatoon (52° N, 107°W) medium frequency (MF) radar data from 1979 to 1993 have been analyzed to investigate the climatology of irregular wind components in the height region 60-100 km. This component is usually treated in terms of internal gravity waves (IGW). Three different band-pass filters have been used to separate the intensities of IGWs having periods 0.2-2.5; 1.5-6 and 2-10 h, respectively. Height, seasonal and inter-annual variations of IGW intensities, anisotropy and predominant directions of propagation are investigated. Mean over 14 years' seasonal variation of the intensity of long-period IGWs shows a dominant annual component with winter maximum and summer minimum. Seasonal variations of the intensity of short-period waves have a strong semi-annual component as well, which forms a secondary maximum in summer. Predominant azimuths of long-period IGWs are generally zonal, though they vary with season. For short-period IGWs, the predominant azimuth is closer to the meridional direction. Anisotropy of IGW intensity is larger in summer, winter and at lower altitudes. The IGW intensity shows apparent correlation with both solar and geomagnetic activity. In most cases, this correlation appears to be negative. The variations versus solar activity is larger for longer-period IGW. Possible reasons and consequences of the observed climatological variations of IGW intensity are discussed.


Sign in / Sign up

Export Citation Format

Share Document