scholarly journals Decision making by using a computer algorithm to analyze hydrocarbon production systems

2016 ◽  
pp. 75-83
Author(s):  
Robinson Stevens Salazar-Rúa ◽  
Johan Darío Caicedo-Reyes ◽  
Jovani Alberto Jiménez-Builes

This paper shows an algorithm that allows to automate the procedures of nodal analysis and flow optimization in a hydrocarbon production system. The procedure of nodal analysis is highly useful in flow wells, intermittent wells or in wells with artificial production systems. The nodal analysis evaluates a production system divided into two basic components: flow through vertical piping or production piping, and flow through horizontal piping or discharge line. For the prediction of each component's behavior, the pressure drop in each component is obtained. In order to obtain the pressure drops, nodes in different important points within the production system must be assigned; therefore, production expenses can vary and, by using a suitable calculation method, the pressure drop between two nodes is calculated. Then, a node is selected and the pressure drops are added to or subtracted from the initial pressure point or departure node, until obtaining the solution node. The results obtained when using the algorithm have allowed to update both procedures, obtaining advantages such as improvement in response time, among others. This analysis is a crucial point when making decisions related to production costs in any oil company.

2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
P. Dremák ◽  
Á. Csihon ◽  
I. Gonda

Success of apple production is highly influenced by the applied production system and the planted cultivar. In this paper growing characteristics of 39 apple cultivars were studied in integrated and organic production systems. These kind of parameters are less studied in the cultivar and training system examinations, although they have huge effect on the training and maintaining of canopy, on the pruning necessity, ultimately on the production costs. According to our results the thickness of the central axis of apple trees showed significant differences between the integrated and the organic systems. Axis of the trees with lower trunk thickness tapers more slightly in the integrated production system, than in the case of the trees with thicker trunk in the organic system. Thicker axis is not accompanied by thicker trunk, namely the thickness of the central leader starts to decrease stronger in the organic production system, compared to the integrated one.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
T. A. Jankowski ◽  
E. N. Schmierer ◽  
F. C. Prenger ◽  
S. P. Ashworth

A simple model is developed here to predict the pressure drop and discharge coefficient for incompressible flow through orifices with length-to-diameter ratio greater than zero (orifice tubes) over wide ranges of Reynolds number. The pressure drop for flow through orifice tubes is represented as two pressure drops in series; namely, a pressure drop for flow through a sharp-edged orifice in series with a pressure drop for developing flow in a straight length of tube. Both of these pressure drop terms are represented in the model using generally accepted correlations and experimental data for developing flows and sharp-edged orifice flow. We show agreement between this simple model and our numerical analysis of laminar orifice flow with length-to-diameter ratio up to 15 and for Reynolds number up to 150. Agreement is also shown between the series pressure drop representation and experimental data over wider ranges of Reynolds number. Not only is the present work useful as a design correlation for equipment relying on flow through orifice tubes but it helps to explain some of the difficulties that previous authors have encountered when comparing experimental observation and available theories.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
C. Naaktgeboren ◽  
P. S. Krueger ◽  
J. L. Lage

The determination of permeability K and form coefficient C, defined by the Hazen-Dupuit-Darcy (HDD) equation of flow through a porous medium, requires the measurement of the total pressure drop caused by the porous medium (i.e., inlet, core, and outlet) per unit of porous medium length. The inlet and outlet pressure-drop contributions, however, are not related to the porous medium length. Hence, for situations in which these pressure drops are not negligible, e.g., for short or very permeable porous media core, the definition of K and C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface-fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure drop predominates over the inlet and outlet pressure drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10−2 to 102 and φ from 6% to 95%.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
João Carlos von Hohendorff Filho ◽  
Denis José Schiozer

In recent years, the oil industry has used various methodologies to solve numerical coupling of reservoirs and production systems to properly model complex projects needing an integrated solution of computational models that represent the fluid flow through the reservoir up to the surface. We present a study of explicit coupling methodology testing the production system on common operating conditions, verifying the benefits and quantifying limitations of explicit methodology, due to numerical stability errors reported in literature.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


Solar Energy ◽  
2002 ◽  
Author(s):  
Theodore W. von Backstro¨m ◽  
Andreas Bernhardt ◽  
Anthony J. Gannon

The paper investigates the flow through a representative tall solar chimney with seven sets of internal bracing wheels with radial spokes. The paper presents experimental data measured in a 0.63 m diameter laboratory scale chimney model with and without bracing wheels. A fan at one end of the chimney model either sucked or blew the flow through it. The measured friction pressure drop was higher than theoretical values for smooth walls, and swirling, blown flow increased it by another 12%. The seven bracing wheels, each had twelve spokes, each spoke consisting of a pair of rectangular section bars, caused order of magnitude larger pressure drops than wall friction. For the sucked-through flow the forced, swirling, disturbed flow increased the pressure drop by up to 36%. Bracing wheels also increased the exit kinetic energy coefficient to 1.26 with the last wheel at the chimney exit. This effect could in combination with the bracing wheel drag reduce flow through the chimney. Designers of large chimneys should take care to minimise the number of bracing wheels, and possibly to streamline spoke sections. If possible, the top bracing wheel should be far enough from the exit for the flow to reattach to the wall after passing over the spoke attachment rim at the wall.


Author(s):  
Debanshu Roy ◽  
Amit Kumar ◽  
Rathindranath Maiti ◽  
Prasanta Kumar Das

In this paper, an attempt has been made to analyze the effect of spool port/ groove geometry on the pressure drop and chamber pressures which effect the performance parameters of the flow distributor valve. The work mainly involves formulation of detailed mathematical model of the valve and compare them on the same platform. For mathematical modelling, Matlab has been used. The size of the orifices is considered same throughout the model for better comparison. Initially the construction and functioning of flow distributor valve along with working principles of hydrostatic motor (Rotary Piston) is shown. Next shown the analytical analysis of area change and pressure drops due to different geometry of the spool valve ports. After that the computational fluid dynamics (CFD) analysis has been shown. A complete mathematical model to describe such flow distributor valve is developed after having a comprehensive knowledge of orifice characteristics, flow interactions based on valve geometry. Equations of flow through different orifices (fixed and variable area) of the valve have been developed based on the relationships obtained earlier.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2419
Author(s):  
Roman Dyga ◽  
Sebastian Brol

This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and porosities ranging from 29.9% to 94.3% were used. Air, water and oil were pumped through the foams. The tests covered laminar, transitional and turbulent flow. We demonstrated that the Reynolds number, in which the hydraulic dimension should be defined based on foam porosity and pore diameter de = ϕdp/(1 − ϕ), can be used as a flow regime assessment criterion. It has been found that fluid pressure drops when flowing through metal foams significantly depends on the cell size and porosity of the foam, as well as the shape of the foam skeleton. The flow patterns had a significant influence on the pressure drop. Among other things, we observed a smaller pressure drop when plug flow changed to stratified flow. We developed a model to describe pressure drop in flow through metal foams. As per the proposed methodology, pressure drop in single-phase flow should be determined based on the friction factor, taking into account the geometrical parameters of the foams. We propose to calculate pressure drop in gas–liquid flow as the sum of pressure drops in gas and liquid pressure drop corrected by the drop amplification factor.


2013 ◽  
Vol 23 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Suzette P. Galinato ◽  
Carol A. Miles

Lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) are popular fresh market vegetable crops. In western Washington, there is interest in growing them in high tunnel production systems because of the region’s mild, coastal climate. The objectives of this study were to contrast the economic potential of growing lettuce and tomato under high tunnel and open-field production systems, and identify the main factors affecting profitability within each production system. Economic data for this study were collected by interviewing experienced lettuce and tomato growers in western Washington during focus group sessions. Costs of production varied by crop and production system, and findings indicated that it was five times more costly to grow lettuce and eight times more costly to grow tomato in a high tunnel than in the open field in western Washington. For lettuce, the labor cost per square foot of growing area was found to be 6 times greater in a high tunnel than in the open field; and for tomato, labor costs were 10 times greater in a high tunnel than in the open field. Total labor cost comprised more than 50% of the total production costs of lettuce and tomato in both the high tunnel and open-field systems. The percentage of total labor cost was similar in both the high tunnel and open-field production for lettuce, but was higher in high tunnel tomato production than in the open field. Tunnel-grown lettuce and tomato had three and four times greater marketable yield compared with field-grown, respectively. Given the base crop yield and average price, it was 43% more profitable to grow lettuce in the open field than in the high tunnel, while in contrast, high tunnel-grown tomato was three times more profitable than open-field tomato production.


Author(s):  
Bethany Worl ◽  
Samuel Nielson ◽  
Xiuling Wang

Abstract A variety of models exist to describe the frictional pressure drop for two-phase flow in a pipe. These models all are based on assumptions and simplifications of the flow regime and can experience difficulty when modeling flow through non-horizontal pipes due to the buoyant effects as the bubbles grow in size. Using computational fluid dynamics, it is possible to model the interaction between the two phases and determine an expected pressure drop. In order to evaluate the effect of the inclination angle of a channel, a parametric study will be conducted using ANSYS Fluent; these predicted pressure drops will then be compared to those found in literature for validation and then to other theoretical pressure drop calculations. Through this study, the benefits of both the theoretical framework and the numerical simulation will be identified.


Sign in / Sign up

Export Citation Format

Share Document