scholarly journals COMPARISON OF WATER HEATING BY SOLAR COLLECTORS AND PHOTOVOLTAIC PANELS

Author(s):  
Imants ZIEMELIS ◽  
Henriks PUTANS ◽  
Ilze PELECE ◽  
Andrejs SNEGOVS

Amount of presently mainly used fossil energy resources on the earth are limited and its impact on the earth environment is negative. Therefore, scientific research on replacing them with alternative energy like solar is important. Usually in practice, solar radiation for domestic water heating by solar collectors and production of electric energy by photovoltaic (PV) panels is used. Obtained by solar panels electric energy for water heating also can be use. The aim of the research is to make out the more preferable method for water heating by solar radiation particularly in weather conditions of Latvia. There are some advantages and disadvantages for each of them analyzed in the paper. Our research has shown that, at the same intensity of solar radiation, the efficiency of solar collectors is higher while the heated water temperature in the system’s hot water tank is lower, and at higher ambient air temperature as well, but opposite to this, efficiency of PV panels is higher at lower ambient air temperature. Electricity produced by PV panels, using an electric resistance heaters heat water independently of its temperature. The amount of heat energy transferred from a solar collector by heat carrier to the hot water tank depends on the temperature difference between the heat carrier and heated water. The method of investigation corresponds to the goal of investigation, the effectivity of solar collectors and solar panels of different design and construction has analyzed in the paper.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4586 ◽  
Author(s):  
Zukowski ◽  
Radzajewska

One of the most effective ways to reduce greenhouse gas emissions is the widespread use of solar panels. A new approach to estimating the annual energy output ESC of liquid-based solar thermal collectors is presented in this paper. The main parameters of the surrounding environment that affect the energy yield from solar water heating (SWH) systems are total solar radiation ES and outdoor air temperature θO. Here, two functions are developed that allow the specification of the ESC value based on these two previously determined factors. The article presents the subsequent stages that led to the development of this method. In the first step, the computer model of a solar domestic hot water (SDHW) system was built in the EnergyPlus environment. An object of the modeling procedure was the real solar installation located at Bialystok University of Technology. The database containing the annual energy output of the solar collectors, total solar radiation, and outdoor air temperature was developed based on the results of simulations made for 24 Polish cities. Then, the multiple regression method (implemented in Statistica v.13.1) was used to correlate these variables. Two contour graphs were also developed to determine the energy yield from solar collectors.


2019 ◽  
pp. 76-80
Author(s):  
Андрій Миколайович Радченко ◽  
Анатолій Анатолійович Зубарєв ◽  
Сергій Георгійович Фордуй ◽  
Володимир Володимирович Бойчук ◽  
Віталій Васильович Цуцман

The analysis of the efficiency of cooling air of cogeneration gas-piston module of installations for combined production of electric energy, heat, and cold is performed. The installation for energy supply includes two JMS 420 GS-N.LC GE Jenbacher cogeneration gas-piston engines manufactured as cogeneration modules with heat exchangers for removing the heat of exhaust gases, scavenge gas-air mixture, cooling water of engine and lubricating oil. The heat of hot water is transformed by the absorption lithium-bromide chiller AR-D500L2 Century into the cold, which is spent on technological needs and for the operation of the central air conditioner for cooling the incoming air of the engine room, wherefrom it is sucked by the turbocharger of the engine. The temperature of the scavenge gas-air mixture at the entrance to the working cylinders of the engine is maintained by the system of recirculating cooling with the removal of its heat into surroundings by the radiator. Because of significant heat influx from working engines and other equipment, as well as through the enclosures of the engine room from the outside to the air-cooled in the central air conditioner in the engine room, from where it is sucked by a turbocharger, the air temperature at the inlet of the turbocharger is quite high: 25...30 °C. At elevated temperatures of the ambient air at the inlet of the radiator for cooling scavenge gas-air mixture and the air at the turbocharger inlet the fuel economy of engine is falling, which indicates the need for efficient cooling of air. The efficiency of cooling the air of the gas-piston module was estimated by a reduction in the consumption of gaseous fuel and the increase in electric power of the engine. For this purpose, the data of monitoring on the fuel efficiency of the gas-piston engine with the combined influence of the ambient air temperature at the inlet of the radiator and the air at the turbocharger inlet were processed to obtain data on their separate effects and to determine the ways to further improve the air cooling system of the gas-piston module.


2015 ◽  
Vol 775 ◽  
pp. 39-43
Author(s):  
Cheng Chang Lien ◽  
Jeng Liang Lin ◽  
Perng Kwei Lei

A water heating system which utilized biogas energy as a heat source in farrowing house of pig farm was developed in this study. The hot water which was heated by the biogas-burners flowed through the delivery pipeline to heat the metal panel made of aluminum alloy in the piglet’s incubator. The ambient air temperature in the piglets incubator could be raised by way of the thermal radiation of the aluminum panel and then kept the piglets warm. The simulation tests of the hot-water heating system was aimed to find out the reference conditions of the field tests by measuring the temperature of the hot water under different flow rate of the hot water and investigating the air temperature change rate in piglets incubator. The results of simulation tests showed that the ambient air temperature of the piglets incubator can achieve above 28 °C within 30 minutes in the conditions of 90 °C hot water and 45.3 L/min water flow rate. The influence of flow rate to the ambient air temperature in the piglet’s incubator was not significant. The results of the field tests obtained that the heating panel surface temperature increased significantly with the rising hot water temperature. Under the condition of 85 °C hot water and 45.3 L/min flow rate, the raised air temperature was 5.2 °C within 25 minutes in the piglets incubator where 13-day-age eight piglets stayed. This hot-water heating system can switch by hand to the electric-auxiliary heating device when there is no enough biogas to use. The hot-water heating system can achieve the purpose of saving electric energy and reducing the emissions of the greenhouse gas. It is feasible to operate and adjust the suitable temperature for the growth environment of piglets.


Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


Author(s):  
Henriks Putāns ◽  
Viktorija Zagorska ◽  
Imants Ziemelis ◽  
Zanis Jesko

A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation has been obtained. During the experimental examination the maximum temperature of the heat carrier reached 80˚C at the intensity of solar radiation about 0.8 kW/m2 and ambient air temperature around 32˚C. The efficiency of the collector reached 33-60%, depending on the intensity of solar radiation and surrounding air temperature.


2021 ◽  
Vol 25 (1) ◽  
pp. 1284-1292
Author(s):  
Roberts Kaķis ◽  
Ilze Poļikarpova ◽  
Ieva Pakere ◽  
Dagnija Blumberga

Abstract Europe has a course to zero emissions by 2050, with a strong emphasis on energy sector. Due to climatic conditions in Latvia, district heating (DH) plays an important role in the energy sector. One of the solutions to achieve the set goals in DH is to introduce emission-free technology. Therefore, the popularity of installation of large-scale solar collector plants continues to increase in DH in Europe. The first large-scale solar collector field in the Baltic States was installed in 2019. Solar collector active area is 21 672 m2 with heat storage water tank 8000 m3. The article shows the first operation results of this system and evaluates influencing factors. The results of the analysis show that system productivity is mainly demanded by solar radiation, and the strongest correlation between these parameters were established in May. The highest correlation between ambient air temperature and produced thermal energy is reached when ambient air temperature is between 7 °C to 15 °C and production process has not been externally regulated. The temperature difference between flow and return temperatures of the heat carrier affect solar collector performance minimally and strong correlation was not observed.


A completed study of a solar hot water heating system installed in a school showed an annual average efficiency of 15%, the low efficiency largely caused by the unfavourable pattern of use in schools. Field studies, in 80 existing and 12 new houses, of a simple domestic hot water system have been initiated to ascertain the influence of the occupants on the actual performance of solar collector systems. The development of testing methods of solar collectors and solar water heating systems is being undertaken in close collaboration with the B.S.I. and the E.E.C. Solar space heating is being investigated in two experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings in the U.K. show that they are far less cost-effective than other means of conserving energy in buildings.


2014 ◽  
Vol 658 ◽  
pp. 35-40 ◽  
Author(s):  
Daniela Ciobanu ◽  
Codruta Jaliu ◽  
Radu Saulescu

The use of renewable energy sources represents a continuous concern for the researchers around the world. The main source of renewable energy, the sun can be used for producing hot water / heating or electric energy, by means of solar collectors. The concentrating solar collectors contain tracking systems for orientation on one or two axes. The tracking system for the elevation motion has to ensure a reduced angular stroke. The mechanism that is usually included in the system structure is of linkage type, being driven by a linear actuator. The mechanism has the advantages of low complexity and reduced cost. In the case of diurnal motion, the angular stroke is larger, being usually obtained with gears or chain drives. The actuation is achieved by motor-reducers with high transmission ratios and costs. In order to reduce the costs, mechanisms containing linkages driven by linear actuators are proposed in literature. These tracking systems have the disadvantage of large overall dimensions. To reduce this disadvantage, the paper proposes a new variant of chain tracking system driven by a linear actuator. Then the proposed tracking system is structurally optimized, process that generates 6 new variants of mechanisms. These solutions eliminate the problems created by the hyperstatical constraints and avoid blocking in case of assembling errors.


Author(s):  
Saeed Moaveni ◽  
Patrick A. Tebbe ◽  
Louis Schwartzkopf ◽  
Joseph Dobmeier ◽  
Joseph Gehrke ◽  
...  

In this paper, we will present a numerical model for estimating the thermal performance of unglazed transpired solar collectors located on the Breck School campus in Minneapolis, Minnesota. The solar collectors are installed adjacent to the southeast facing wall of a field house. The collectors preheat the intake air before entering the primary heating unit. The solar collector consists of 8 separate panels (absorber plates). Four fans are connected to the plenum that is created by the absorber plates and the adjoining field house wall. All fresh air for the field house is provided by the solar collectors before being filtered and heated by four, independent two stage natural gas fired heaters. Moreover, the following data were collected onsite using a data acquisition system: indoor field house space temperature, ambient air temperature, wind speed, wind direction, the plenum exit air temperature, the absorber plate temperature, and the air temperatures inside the plenum. The energy balance equations for the collector, the adjacent building wall, and the plenum are formulated. The numerical model is used to predict the air temperature rise inside the plenum, recaptured heat loss from the adjoining building wall, energy savings, and the efficiency of the collectors. The results of the numerical model are then compared to the results obtained from the onsite measurements; which are in good agreement. The model presented in this paper is simple yet accurate enough for architects and engineers to use it with ease to predict the thermal performance of a collector.


2014 ◽  
Vol 935 ◽  
pp. 97-101
Author(s):  
Zhen Zhong Guan ◽  
Chong Jie Wang ◽  
Yi Bing Xue

A solar district heating and water heating integrated system has been designed and installed in a 5000m2 residential quarter. The integrated system uses vacuum glass tube solar collector to collect solar radiation energy, and uses water as heat medium. Solar energy provides almost 50% of the total heating energy consumption in winter. The inadequate part of energy can be provided by a steam heater which steam is provided by exhaust steam of the turbine from a power station nearby. The integrated system is operating automatically according to the solar radiation and working condition. Low-temperature floor radiation system is used as indoor heat radiator. At the same time, the system can provide 24h hot water supply. The integrated system has operated for 3 years, saves a large amount of energy, and receives good profit in both economical and environment.


Sign in / Sign up

Export Citation Format

Share Document