Substitution analysis of seedling stage copper tolerance in wheat

2003 ◽  
Vol 51 (4) ◽  
pp. 397-404 ◽  
Author(s):  
A. F. Bálint ◽  
G. Kovács ◽  
A. Börner ◽  
G. Galiba ◽  
J. Sutka

The relatively copper-tolerant wheat variety Chinese Spring (recipient), the copper-sensitive variety Cappelle Desprez (donor) and their substitution lines were screened for copper tolerance in a soil pot experiment under artificial growth conditions. Chromosomes 5A, 5B, 5D and 7D of Cappelle Desprez significantly decreased the copper tolerance of the recipient variety to varying extents.  By contrast, the 6B and 3D chromosomes significantly increased the copper tolerance of Chinese Spring, suggesting that a wide range of allelic differences could be expected between wheat genotypes for this character. The significant role of homologous group 5 in copper tolerance was confirmed by testing wheat-rye substitution lines. The substitution of rye chromosome 5R (5R/5A substitution line) into a wheat genetic background significantly increased the copper tolerance of the recipient wheat genotype. The results suggest that chromosomes 5R and 5A probably carry major genes or gene complexes responsible for copper tolerance, and that the copper tolerance of wheat can be improved through the substitution of a single chromosome carrying the responsible genes. At the same time, it is also possible that the effect of homologous group 5 is not specific to copper tolerance, but that the genes located on these chromosomes belong to a general stress adaptation (frost, cold, vernalisation requirements, etc.) complex, which has already been detected on this chromosome. To answer this question further studies are needed to determine the real effect of these chromosome regions and loci on copper tolerance.

1987 ◽  
Vol 108 (3) ◽  
pp. 543-548 ◽  
Author(s):  
J. W. Snape ◽  
W. J. Angus ◽  
Beryl Parker ◽  
Debra Leckie

SummaryF2, monosomic analysis involving crosses between the monosomic series of a resistant wheat variety, Chinese Spring, and a susceptible variety, Sicco, has located a major gene locus, designated Dfql, on chromosome 2B of wheat which determines the differential response of these varieties to treatment with the wild oat herbicide, difenzoquat. The allele from Chinese Spring conferring resistance is dominant and studies of the responses of Chinese Spring single chromosome substitution lines and nullisomic–tetrasomic lines for chromosome 2B indicate that this allele actively promotes resistance to the herbicide. It is suggested that this gene may prevent inhibition of DNA synthesis in the apical meristem, which is the site of action of the herbicide (Pallett & Caseley, 1980).Other chromosomes were also implicated as carrying ‘modifier genes’ which affect the ratio of resistant: susceptible plants in F2 monosomic families, namely 1D, 2D, 3A, 3B, 5B and 5D. These chromosomes may affect the retention and translocation of the herbicide to the target site and hence the threshold of response.The simple inheritance of difenzoquat resistance indicates that it should be easy by conventional breeding techniques to transfer the resistance into susceptible varieties.


Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 519-524 ◽  
Author(s):  
N. A. Tuleen ◽  
G. E. Hart

Isozyme markers were used to develop Triticum aestivum cv. Chinese Spring–Elytrigia elongata (= Agropyron elongatum, 2n = 14, genome E) disomic 3E and 5E addition lines. Subsequently, all possible lines containing 3E and 5E substituted for wheat homoeologues and several 3E and 5E ditelosomic addition and substitution lines were developed. Plants containing chromosome 3E substituted for wheat chromosomes of homoeologous group 3 are similar to 'Chinese Spring' in vigor and fertility while plants containing 3EL substituted for chromosomes of group 3 are less fertile than 'Chinese Spring'. This indicates that both arms of 3E are involved in sporophytic compensation. Plants containing chromosome 5E substituted for wheat chromosomes of homoeologous group 5 are as vigorous but less fertile than 'Chinese Spring'. 5EL (5A) and 5EL (5B) plants are lower in fertility than 5E (5A) and 5E (5B) plants, indicating that both arms of 5E are involved in sporophytic compensation. 5E (5D) and 5EL (5D) plants are similar in fertility. Male gametophytes in which 3E or 5E replaces a wheat homoeologue function at a lower rate than normal gametes.Key words: wheat, Triticum, Elytrigia elongata, alien chromosome addition lines.


1960 ◽  
Vol 40 (3) ◽  
pp. 524-538 ◽  
Author(s):  
G. J. Green ◽  
D. R. Knott ◽  
I. A. Watson ◽  
A. T. Pugsley

Lines of the wheat variety Marquis carrying genes Sr6, Sr7, Sr8, Sr9, Sr10, and Sr6 plus Sr7 for resistance to stem rust were produced by the backcross method. The reactions of these lines to 99 North American cultures of 29 races of stem rust and to 8 Australian cultures were determined. Genes Sr6, Sr8, and Sr9 conferred a uniform type of resistance to most of the cultures. Genes Sr7 and Sr10 conferred only moderate resistance to a few cultures. Genes Sr6, Sr8, and Sr9 appeared to confer the same kind of resistance in Marquis after 5 backcrosses as in the source varieties, but Sr7 and Sr10 seemed less effective. Results of the infection studies indicated that Sr7 may be allelic with a gene for resistance in Marquis and that at least two alleles conditioning different rust reactions may occur at the Sr9 locus. The reactions of the lines with Sr6, Sr8, and Sr9 were nearly identical with those of the Chinese Spring substitution lines, Red Egyptian XX, Red Egyptian VI, and Red Egyptian XIII respectively, which presumably have these genes. The data indicated that Sr6 is the same as SrKa1 and Sr9 is the same as SrKb1. The resistance of lines with Sr7, Sr8, and Sr9 was affected only slightly by temperature but the resistance of lines with Sr10 and especially of those with Sr6 diminished at high temperature.


1992 ◽  
Vol 118 (1) ◽  
pp. 9-15
Author(s):  
D. Leckie ◽  
J. W. Snape

SUMMARYSingle chromosome substitution lines of hexaploid wheat were developed using a variety resistant to difenzoquat, Chinese Spring, as donor and a susceptible variety, Sicco, as recipient, and were used to identify chromosomes carrying genes which modify the responses of these varieties. It was found that chromosomes 3B and 5D from Chinese Spring might act to reduce the amount of damage caused by the herbicide in the presence of the allele for susceptibility at the Dfql locus. The intermediate response to the herbicide, which is shown by some commerical varieties, was also investigated using a backcross reciprocal monosomic analysis. In these varieties, the allele at the Dfql locus determining the reaction to the herbicide was shown to be similar to that of the susceptible variety Sicco. It is, therefore, probable that the responses of intermediate varieties are due to the effects of modifier genes increasing resistance.


2012 ◽  
Vol 63 (6) ◽  
pp. 513 ◽  
Author(s):  
Shahram Mohammady ◽  
Roghayeh Aminian ◽  
Sadolla Hoshmand ◽  
Mahmood Khodombashi

Chromosomal substitution lines of wheat variety Timstein (Tim) into the genetic background of variety Chinese Spring (CS) were used to evaluate the chromosomal location of genes controlling carbon isotope discrimination (Δ), photosynthesis rate (PR), stomatal conductance (SC), and grain yield. The experiment was carried out in the field at Shahrekord University Research Station. Considerable variation was observed among the substitution lines and between the parents for all traits. Chinese Spring had smaller values for the characters under study than Timstein. Significant correlations were found for grain yield with PR (r = 0.556) and Δ (r = 0.619). The substitution line CS (Tim2B) was significantly different from CS for Δ (P < 0.01). The substitution of homeologous group 3 chromosomes produced significant differences from the recipient variety for PR. Substitution lines CS (Tim3A), CS (Tim3B), CS (Tim4B), and CS (Tim1D) were significantly different from CS for SC. Genomic comparisons indicated that genome B had higher values of all four characters compared with the A and D genomes. Homeologous effects of genomes were documented for Δ and PR only and not for SC and grain yield.


Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 119-122 ◽  
Author(s):  
Rosalind Morris ◽  
J. W. Schmidt ◽  
P. J. Mattern ◽  
V. A. Johnson

2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1545-1554 ◽  
Author(s):  
J. Li ◽  
D.L. Klindworth ◽  
F. Shireen ◽  
X. Cai ◽  
J. Hu ◽  
...  

The aneuploid stocks of durum wheat ( Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat ( T. aestivum L.) have been developed mainly in ‘Langdon’ (LDN) and ‘Chinese Spring’ (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.


Genetics ◽  
1981 ◽  
Vol 97 (2) ◽  
pp. 391-414
Author(s):  
Jan Dvořák ◽  
Patrick E McGuire

ABSTRACT Wheat cultivar Chinese Spring (Triticum aestivum L. em. Thell.) was crossed with cultivars Hope, Cheyenne and Timstein. In all three hybrids, the frequencies of pollen mother cells (PMCs) with univalents at metaphase I (MI) were higher than those in the parental cultivars. No multivalents were observed in the hybrids, indicating that the cultivars do not differ by translocations. Thirty-one Chinese Spring telosomic lines were then crossed with substitution lines in which single chromosomes of the three cultivars were substituted for their Chinese Spring homologues. The telosomic lines were also crossed with Chinese Spring. Data were collected on the frequencies (% of PMCs) of pairing of the telesomes with their homologues at MI and the regularity of pairing of the remaining 20 pairs of Chinese Spring chromosomes in the monotelodisomics obtained from these crosses. The reduced MI pairing in the intercultivar hybrids was caused primarily by chromosome differentiation, rather than by specific genes. Because the differentiation involved a large part of the chromosome complement in each hybrid, it was concluded that it could not be caused by structural changes such as inversions or translocations. In each case, the differentiation appeared to be unevenly distributed among the three wheat genomes. It is proposed that the same kind of differentiation, although of greater magnitude, differentiates homoeologous chromosomes and is responsible, together with structural differentiation, for poor chromosome pairing in interspecific hybrids.


Author(s):  
Ben Hadj-Daoud H ◽  
◽  
Ben Salem I ◽  
Boughalleb-M’Hamdi N ◽  
◽  
...  

Background: Colletotrichum gloeosporioides is important plant pathogens on a wide range of plant hosts such as citrus causing pre- or post-harvest infections as anthracnose, post-bloom fruit drop, tearstain and stem-end rot on fruit, or wither-tip of twigs. Method: The optimization of growth conditions of this pathogen was performed (solid media, temperature, pH and water potential under laboratory experiments). Results: Our results revealed that the maximum radial growth of C. gloeosporioides was recorded on SDA medium. All isolates were able to grow on PDA at temperatures of 15 and 30°C (over 0.7cm/day). Optimal growth radial was recorded at pH 5, 6, 7 and 8. Similar responses were obtained with both salt types, but, in general, C. gloeosporioides was more tolerant to KCl than NaCl. Conclusion: Studies of cultural, morphological traits of the pathogen are prominent to understand the response of the pathogen in different environmental and nutritional conditions.


Sign in / Sign up

Export Citation Format

Share Document