Effects of nutrient supply and sowing time on the yield and pathological traits of winter oilseed rape

2013 ◽  
Vol 61 (3) ◽  
pp. 195-205
Author(s):  
P. Pepó

The fertilizer response of oilseed rape (Brassica napus var. oleifera f. biennis L.) was investigated on the chernozem soil in Eastern Hungary in a three-year experiment with two sowing times. The results proved that oilseed rape had high fertilizer (N+PK) demand. In the experiments, N = 210 kg ha−1 +PK proved to be the optimal fertilizer dose. The yield-increasing effect of fertilization was 800 to 1300 kg ha−1, depending on the year. The maximum yield (5000 kg ha−1) was obtained in the year with least infection. The excellent natural nutrient-providing ability of chernozem soil was confirmed by the high yield level (3000–4200 kg ha−1) of the control treatment (N = 0 kg ha−1 +PK). The results showed that the specific fertilizer utilization efficiency of oilseed rape decreased if the dose of N+PK fertilizer was increased (being 19–27 kg/1 kg NPK in the control treatment and 11–12 kg/1 kg NPK in the N = 210 kg ha−1 +PK treatment). On the other hand, fertilization improved the water utilization from 4–8 kg/1 mm precipitation + irrigation water to 11–14 kg/1 mm precipitation + irrigation water. The results of these studies confirmed that hybrid rape had excellent adaptability to the sowing time. The results of Pearson’s correlation analysis showed a strong correlation (0.6*–0.9**) between the spring precipitation and temperature and the most important diseases (Sclerotinia, Alternaria, Peronospora, Phoma) attacking oilseed rape.

2013 ◽  
pp. 51-54
Author(s):  
Lajos Karancsi

The field research was set up on chernozem soil at the Látókép AGTC KIT research area of the University of Debrecen. The study focused on yield, water utilization, nutrient reaction and the amount of yield per kg fertilizer of corn hybrid NX 47279 in 2011 and 2012. Based on the yield results it can be concluded that the largest yield in 2011 was 15 963 kg ha-1 at level N120+PK, while in 2012, the maximum yield amounted to 14 972 kg ha-1 at level N90+PK. Surplus yield per kg fertilizer proved that in 2011 level N30+PK resulted in the highest surplus yield (42.3 kg kg-1) compared to the control treatment. In 2012, yield growth was 18.0 kg kg-1 compared to the control treatment. We measured at level N60+PK 17,5 kg kg-1 compared to at level N30+PK, at the N90+PK 17,7 kg kg-1 compared to at level N60+PK. level N30+PK kg kg-1, 17.5 kg kg-1 at level N60+PK and 17.7 kg kg-1 at level N90+PK compared to the control treatment. Results of the regression analysis showed that the amount of nitrogen fertilizer was 117 kg ha-1 in 2011 and 111 kg ha-1 in 2012 in order to reach maximum yield. Doses of fertilizers above the amounts previously mentioned resulted in yield decrease. Our results indicated that in the drought year of 2012 the hybrid used available water more efficiently than in 2011. The hybrid produced 59 kg ha-1 yield in 2012 and 51.9 kg ha-1 in 2011 at an optimum nutrition level.


2010 ◽  
pp. 77-81
Author(s):  
Ádám Lente

Three agrotechnical factors (sowing time, fertilization, plant density) and the effect of two different genotypes on the yields of sweet corn was studied, in the dry and warm crop-year of 2009 on a chernozem soil in the County of Hajdúság. The experiments were carried out on the Látókép Research Station of Debrecen University. The experiment involved two sowing times (21 of April and 19 of May), six fertilizer levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two genotypes (Jumbo, Enterprise). Four plant density levels, 45 thousand ha-1, 55 thousand ha-1, 65 thousand ha-1 and 75 thousand ha-1 were used. In the early sowing time the highest yield was obtained with 65 thousand ha-1 plant density level and N120+PK treatment of Jumbo (18169 kg ha-1), while the maximum yield of Enterprise was 17818 kg ha-1 with 75 thousand ha-1 plant density level and N90+PK dose. In case of the late sowing time both hybrids gave the highest yield with 75 thousand ha-1 plant density level and N30 +PKtreatment, with a crop yield of 13143 kg ha-1 (Jumbo) and 14324 kg ha-1, ( Enterprise). 


1995 ◽  
Vol 46 (7) ◽  
pp. 1381 ◽  
Author(s):  
H Gomez-Macpherson ◽  
RA Richards

The main environmental constraints to the yield of dryland wheat in south-eastern Australia are: a low and erratic rainfall throughout the growing season, the chance of frost at flowering time, and high temperatures during the grain-filling period. The aims of this work were threefold. Firstly, to determine which sowing period minimizes these constraints and results in the highest yields. Secondly, what is the optimum flowering time for a given sowing date so that maximum yield is achieved. The third aim was to determine whether any crop characteristic was associated with high yield or may limit yield in the different sowings. The experiments were conducted at three sites in New South Wales that were representative of dry (Condobolin) and cooler and wetter (Moombooldool, Wagga Wagga) sites in the south-eastern wheatbelt. In this study several sets of isogenic material, involving a total of 23 genotypes, that were similar in all respects except for flowering time, were sown early (mid-April and early May), normal (mid to late May) and late (June to mid July). Characteristics of the highest-yielding lines in each experiment are presented. The average flowering time of the highest yielding lines in all sowings had a range of only 12 days at the driest site, but a range of over 20 days at the coolest and wettest site. The optimum anthesis date (day of year, y) was related to sowing date (day of year, doy) at the cooler sites such that: y = 245+0.32 doy (r2 = 0.86) and at Condobolin, y = 253+0.19 doy (r2 = 0.91). Optimum anthesis date expressed in thermal time (�C days) after sowing (y) was related to sowing time (doy) as follows: y = 2709 -8-3 doy (r2 = 0.84). It is suggested that these relationships are likely to be quite robust and should hold true for similar thermal environments in eastern Australia. There was little variation in grain yield between the earliest sowing in mid-April (108 doy) and sowings throughout May (up to 147 doy). Grain yield declined 1.3% per day that sowing was delayed after late May. Aboveground biomass was substantially higher in early sown crops. However, this did not translate into higher yields. From the evidence presented it is argued that the principal reason that greater yields were not obtained in the early sowings, particularly in the April sowing, was the greater competition for assimilates between the growing spike and the elongating stem. It is suggested that a way of overcoming this competition is to genetically shorten the stems of winter wheats. This should capitalize on the considerable advantages in terms of water use efficiency that early sowing offers and result in greater yields. Barley yellow dwarf virus, although present at the cooler, wettest site in one year, was more frequent in the later sowings than in the early sowing and was not likely to have contributed to the lower than expected yields in the early sowings.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1701 ◽  
Author(s):  
Witold Grzebisz ◽  
Remigiusz Łukowiak ◽  
Karol Kotnis

Application of nitrogen (N) in contrastive chemical form changes availability of soil nutrients, affecting crop response. This hypothesis was evaluated based on field experiments conducted in 2015/16 and 2016/2017. The experiment consisted of three nitrogen fertilization systems: mineral-ammonium nitrate (AN) (M-NFS), organic-digestate (O-NFS), 2/3 digestate + 1/3 AN (OM-NFS), and N rates: 0, 80, 120, 160; 240 kg ha−1. The content of nitrogen nitrate (N-NO3) and available phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) were determined at rosette, onset of flowering, and maturity of winter oilseed rape (WOSR) growth from three soil layers: 0.0–0.3, 0.3–0.6, 0.6–0.9 m. The optimum N rates were: 139, 171 and 210 kg ha−1 for the maximum yield of 3.616, 3.887, 4.195 t ha−1, for M-NFS, O-NFS, OM-NFS. The N-NO3 content at rosette of 150 kg ha−1 and its decrease to 48 kg ha−1 at the onset of flowering was the prerequisite of high yield. The key factor limiting yield in the M-NFS was the shortage of Ca, Mg, O-NFS—shortage of N-NO3. Plants in the OM-NFS were well-balanced due to a positive impact of the subsoil Mg and Ca on the N-NO3 content and productivity. The rosette stage was revealed as the cardinal for the correction of WOSR N nutritional status.


2010 ◽  
pp. 39-46
Author(s):  
András Szabó ◽  
Lajos Fülöp Dóka

Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization ofagrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect ofsowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). Whenone fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of theinfection rate was less after the second fungicide treatment.In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 cropha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 cropdensity level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the cropyield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the controltreatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield wasobtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowingtimes was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.


2019 ◽  
Vol 19 (5) ◽  
pp. 1413-1421 ◽  
Author(s):  
Gaetano Alessandro Vivaldi ◽  
Salvatore Camposeo ◽  
Giuseppe Lopriore ◽  
Cristina Romero-Trigueros ◽  
Francisco Pedrero Salcedo

Abstract The main objective of this study was to acquire agronomic knowledge about the effects of irrigation with saline reclaimed (RW) and desalinated DESERT (DW) water and different irrigation strategies: control full irrigation (FI) and regulated deficit irrigation (RDI) on leaf nutrients, tree growth and fruit quality and yield of almond trees in pots. Our results showed that RW had the highest concentration of some valuable agronomic nutrients such as N, but also of phytotoxic elements (Na and Cl−). Na leaf concentration on RW treatments reached toxic levels, especially under RDI, and toxicity symptoms were shown. Regarding tree growth, cumulate trunk diameter on RW-RDI was significantly lower than on the control treatment and shoot growth was reduced from the beginning of the irrigation season in RW treatments. Maximum yield was reached on RW-FI, 18% higher than the control treatment. However, RDI strategies influenced negatively on yield, being 23% less in RW and 7% less in DW although water productivity was not significantly reduced by water stress. These findings manifest that the combination of RW and RDI can be a promising future practice for almond irrigation, but long-term studies to establish suitable management practices must be developed.


1990 ◽  
Vol 114 (3) ◽  
pp. 275-283 ◽  
Author(s):  
N. J. Mendham ◽  
J. Russell ◽  
N. K. Jarosz

SUMMARYSerial sowings of three cultivars of oilseed rape were made from autumn (May) to spring (October) at two sites, one in the north and one in the south of Tasmania, in 1981. The highest seed yields at both sites exceeded 5 t/ha from early sowing, ranging down to c. 2 t/ha from late sowing at a site where irrigation was adequate and to < 1 t/ha where late-sown crops suffered from water stress. The midseason cultivar Marnoo gave the highest yields at both sites, resulting from a combination of substantial (800 g/m2) top growth before flowering, excellent seed survival, a long period for grain filling and high oil content. The early-flowering line RU1 made much less growth before flowering; while this was partly made up for in later growth, nearly as many seeds per pod being retained as in Marnoo, oil content was low. The later-flowering cultivar Wesbell made more growth before flowering than the other cultivars, but when sown early it tended to grow tall, lodge and lose many pods in the dense, tangled canopy. This, combined with generally fewer seeds per pod, resulted in a much less efficient crop in allocation of dry matter to seeds and oil. Wesbell failed to flower uniformly from the late sowings, indicating segregation for vernalization response. The many immature seeds at harvest gave a low overall oil content. All three cultivars responded to vernalization and longer photoperiod in a pot experiment. While photoperiod appeared to be the main factor controlling the development rate to flowering in the field, there were interactions with vernalization response andtemperature.


2017 ◽  
Vol 14 (2) ◽  
pp. 77-85
Author(s):  
Md Sohel Mahmud ◽  
Md Jafar Ullah ◽  
Md Abdullahil Baque ◽  
Lutfun Naher ◽  
Sayed Mohammad Mohsin

The experiment was conducted to determine the effect of irrigations and sowing dates on growth and yield performance of wheat in the experimental field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during the period of November 18, 2012 to March 30, 2013. The experiment was comprised of two factors, viz. factor A: two irrigations namely irrigation (I) and no irrigation i.e. control (I0), and factor B: three sowing dates such as S1: 1st sowing on 18 November, S2: 2nd sowing on 03 December and S3: 3rd sowing on 18 December. The experiment was laid out in a split plot design with three replications. Irrigation was assigned in the main plot, while sowing time was in the sub-plots. Data on grain yield and different yield contributing characters were taken after harvest. Results indicated that the highest grain yield was obtained with I (2.915 t ha-1) and S1 (2.983 t ha-1). The interaction of irrigation (I) and sowing on 18 November (S1) showed the maximum yield (3.387t ha-1), spike length (17.08 cm), 1000 grain weight (43.4 g), spikelets spike-1 (20.03) and grain spike-1 (65.58) of wheat.The Agriculturists 2016; 14(2) 77-85


Sign in / Sign up

Export Citation Format

Share Document