Running economy and body composition between competitive and recreational level distance runners

2013 ◽  
Vol 100 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Martin Mooses ◽  
J. Jürimäe ◽  
J. Mäestu ◽  
K. Mooses ◽  
P. Purge ◽  
...  
2017 ◽  
Vol 56 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Rauno Laumets ◽  
Karel Viigipuu ◽  
Kerli Mooses ◽  
Jarek Mäestu ◽  
Priit Purge ◽  
...  

AbstractThe aim of the present study was to investigate lower limb anthropometric and composition variables related to running economy (RE) and running performance in a homogeneous group of high level European distance runners. RE at the speeds of 14, 16 and 18 km·h−1 (189 ± 12; 188 ± 11; 187 ± 11 O2 ml·kg−1·km−1) and maximal oxygen uptake (VO2max) (67.3 ± 2.9 ml·kg−1·min−1) of 13 high level distance runners were determined on a motorised treadmill. Anthropometric variables and body composition were measured. The BMI was related to RE at the speed of 14 (r2 = 0.434; p = 0.014), 16 (r2 = 0.436; p = 0.014) and 18 km·h−1 (r2 = 0.389; p = 0.023). Lower leg length was negatively related to RE at the speed of 16 and showed such a tendency at the speed of 14 and 18 km·h−1. VO2max indicated a moderate relationship with RE at the speeds of 14, 16 and 18 km·h−1 (r2 = 0.372, p = 0.030; r2 = 0.350, p = 0.033; r2 = 0.376, p = 0.026, respectively) which was confirmed by subsequent partial correlation analysis. While lower leg length and the BMI presented a relationship with RE, none of the calculated body composition and anthropometric proportions were related to RE or performance. The relationship between RE and VO2max would confirm the notion that RE could be at least partly compensated by VO2max to achieve high performance results.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3758
Author(s):  
Joanna Smarkusz-Zarzecka ◽  
Lucyna Ostrowska ◽  
Joanna Leszczyńska ◽  
Karolina Orywal ◽  
Urszula Cwalina ◽  
...  

Use of probiotic supplements, the benefits of which have not been proven in sportspeople, is becoming more widespread among runners. The aim of this study was to evaluate the effect of a multi-strain probiotic on body composition, cardiorespiratory fitness and inflammation in the body. The randomised, double-blind study included 66 long-distance runners. The intervention factor was a multi-strain probiotic or placebo. At the initial and final stages of the study, evaluation of body composition and cardiorespiratory fitness was performed and the presence of inflammation determined. In the group of men using the probiotic, an increase in lean body mass (p = 0.019) and skeletal muscle mass (p = 0.022) was demonstrated, while in the group of women taking the probiotic, a decrease in the content of total body fat (p = 0.600) and visceral fat (p = 0.247) was observed. Maximum oxygen consumption (VO2max) increased in women (p = 0.140) and men (p = 0.017) using the probiotic. Concentration of tumour necrosis factor-alpha decreased in women (p = 0.003) and men (p = 0.001) using the probiotic and in women (p = 0.074) and men (p = 0.016) using the placebo. Probiotic therapy had a positive effect on selected parameters of body composition and cardiorespiratory fitness of study participants and showed a tendency to reduce inflammation.


1990 ◽  
Vol 2 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Lee N. Cunningham

To compare the physiologic differences between adolescent male and female cross-country runners, 12 male and 12 female high school nonelite distance runners who had competed successfully at the All State 5-km championship cross-country meet were tested in the laboratory. Data were analyzed in relation to maximal oxygen consumption (VO2max), ventilatory threshold (VT), and running economy (RE). Male runners were taller, heavier, had less body fat, and ran faster by 2 minutes and 18 seconds than female runners. Running economy was similar between gender. VO2 at a 215 m•min−1 pace was 46.7 ml•kg−1•min−1 for male runners and 47.8 ml•kg−1•min−1 for female runners. At the VT, males demonstrated a higher VO2 and treadmill velocity than females. Heart rate, percent HR max, and percent VO2 max at the VT were not different between gender. Males demonstrated a higher VO2 max of 74.6 versus 66.1 ml•kg−1•min−1 than female runners. The fractional utilization of VO2 at race pace was not different between males (90%) and females (91%). In conclusion, the primary physiologic determinant for performance differences between nonelite, competitive male and female adolescent distance runners is associated with VO2 max.


2016 ◽  
Vol 22 ◽  
pp. 7 ◽  
Author(s):  
Leif Inge Tjelta ◽  
Shaher A. I. Shalfawi

Running distances from 3000 m to the marathon (42 195 m) are events dominated by energy contribution of the aerobic energy system. The physiological factors that underlie success in these running events are maximal oxygen uptake (VO2max), running economy (RE), the utilization of the maximum oxygen uptake (%VO2max) and velocity at the anaerobic threshold (vAT). VO2max for distance runners competing on an international level has been between 70 and 87 ml/kg/min in men, and between 60 and 78.7 ml/kg/min in women, respectively. Due to lack of air resistance, laboratory testing of RE and vAT are recommended to be conducted on treadmill with 1% slope. %VO2max are in most studies expressed as the average fractional utilization of VO2max at vAT. Much of the current understanding regarding the response to exercise is based on studies of untrained and moderately trained individuals. To use this knowledge to give training recommendations to elite runners is hardly valid. Researchers should therefore exercise caution when giving training recommendations to coaches and elite distance runners based on limited available research.


2017 ◽  
Vol 02 (01) ◽  
pp. E1-E8 ◽  
Author(s):  
Matthew Batliner ◽  
Shalaya Kipp ◽  
Alena Grabowski ◽  
Rodger Kram ◽  
William Byrnes

AbstractRunning economy (oxygen uptake or metabolic rate for running at a submaximal speed) is one of the key determinants of distance running performance. Previous studies reported linear relationships between oxygen uptake or metabolic rate and speed, and an invariant cost of transport across speed. We quantified oxygen uptake, metabolic rate, and cost of transport in 10 average and 10 sub-elite runners. We increased treadmill speed by 0.45 m·s−1 from 1.78 m·s−1 (day 1) and 2.01 m·s−1 (day 2) during each subsequent 4-min stage until reaching a speed that elicited a rating of perceived exertion of 15. Average runners’ oxygen uptake and metabolic rate vs. speed relationships were best described by linear fits. In contrast, the sub-elite runners’ relationships were best described by increasing curvilinear fits. For the sub-elites, oxygen cost of transport and energy cost of transport increased by 12.8% and 9.6%, respectively, from 3.58 to 5.14 m·s−1. Our results indicate that it is not possible to accurately predict metabolic rates at race pace for sub-elite competitive runners from data collected at moderate submaximal running speeds (2.68–3.58 m·s−1). To do so, metabolic rate should be measured at speeds that approach competitive race pace and curvilinear fits should be used for extrapolation to race pace.


2017 ◽  
Vol 6 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Fumiya Tanji ◽  
Yusuke Shirai ◽  
Toshiki Tsuji ◽  
Wataru Shimazu ◽  
Yoshiharu Nabekura

2019 ◽  
Vol 32 ◽  
Author(s):  
Karina Azevedo Lopes ◽  
Mayara Maciel Batista ◽  
Letícia Martins ◽  
André Luiz Kiihn ◽  
Marcos Roberto Queiroga ◽  
...  

Abstract Introduction: Some authors have described the importance of physiological intensity in the behavior of the biomechanical aspects of running (for example, subtalar pronation), but the complex relationships between these variables are not yet well understood. Objective: This study investigated the influence of positive gradients on internal mechanical work (Wint) and maximum subtalar pronation at a submaximal running speed. Method: Sixteen male, trained long-distance runners (age: 29 ± 7 yr; stature: 1.72 ± 0.07 m; body mass: 72.1 ± 10.6 kg), performed four running economy tests (gradients: +1%, +5%, +10% and +15%, respectively) for four minutes at a same submaximal running speed to quantify the maximum values of subtalar pronation and predict the Wint values. Data were analyzed using descriptive statistics, Student’s T-test, and one-way repeated-measures (ANOVA) along with the Statistical Package for the Social Sciences (SPSS) version 20.0. Results: Wint increased according to the gradient (p < 0.05). However, no significant differences were observed in the maximum values of maximum subtalar pronation corresponding to each gradient. Conclusion: Results show the maximum subtalar pronation during submaximal running depends on the speed rather than intensity of effort.


Sign in / Sign up

Export Citation Format

Share Document