Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition

MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1557-1562 ◽  
Author(s):  
Y. Hibino ◽  
S. Ishihara ◽  
N. Sawamoto ◽  
T. Ohashi ◽  
K. Matsuura ◽  
...  

ABSTRACTWe report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was evaluated with Tauc plot analysis from the extinction coefficient obtained by spectroscopic ellipsometry measurements. The obtained bandgaps were 1.0 eV and 1.3 eV. The resulting bandgap was lower than that of bulk MoS2 and higher than that of bulk MoTe2 suggesting mixture of both materials was achieved by co-sputtering.

2021 ◽  
Vol 11 (21) ◽  
pp. 9896
Author(s):  
Veronica Sulyaeva ◽  
Maxim Khomyakov ◽  
Marina Kosinova

Boron carbide is one of the most important non-metallic materials. Amorphous BCx films were synthesized at room temperature by single- and dual-target magnetron sputtering processes. A B4C target and C target were operated using an RF signal and a DC signal, respectively. The effect of using single- and dual-target deposition and process parameters on the chemical bonding and composition of the films as well as their functional properties were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray energy dispersive analysis, X-ray diffraction, ellipsometry, and spectrophotometry. It was found that the film properties depend on the sputtering power and the used targets. EDX data show that the composition of the samples varied from B2C to practically BC2 in the case of using an additional C target. According to the XPS data, it corresponds to the different chemical states of the boron atom. A nanoindentation study showed that the film with a composition close to B2C deposited with the highest B4C target power reached a hardness of 25 GPa and Young’s modulus of 230 GPa. The optical properties of the films also depend on the composition, so the band gap (Eg) of the BCx film varied in the range of 2.1–2.8 eV, while the Eg of the carbon-rich films decreased to 1.1 eV.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 927-931 ◽  
Author(s):  
Y. Y. WANG ◽  
C. M. ZHEN ◽  
Z. J. YAN ◽  
Q. F. GUO ◽  
G. H. CHEN

Low resistance ohmic contacts were fabricated on diamond films. A high boron concentration (~1020 cm -3) was obtained on the surface by ion implantation. The initial film of Ti (20nm) followed by Au (100nm) was deposited by r. f. sputtering. I-V measurements showed that the as-deposited contacts were ohmic. Upon annealing, the ohmic characteristics of the contacts were improved significantly. The specific contacts resistivity decreased from 6.2 × 10-3 to 1.2 × 10-6Ω cm 2 as a result of post-deposition annealing. The X-ray photoelectron spectroscopy analysis indicated the formation of titanium carbide at the Ti/diamond interface in the as-deposited and annealed states. A low oxygen concentration was observed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 787
Author(s):  
Weiqi Wang ◽  
Xiaoming Ling ◽  
Rui Wang ◽  
Wenhao Nie ◽  
Li Ji ◽  
...  

The spontaneously self-organizing multilayered graphite-like carbon (denoted as GLC) /TiC films with various bilayer periods in the range of 13.3–17.5 nm were deposited on silicon and 1Cr18Mn8Ni5N stainless steel substrates using closed field magnetron sputtering deposition facility. The microstructures and chemical compositions of the prepared multilayered films were characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy respectively. The self-organizing multilayered structures in all of the films consisted of titanium carbide layers and sp2-rich carbon layers periodically alternate arrangement. The TiC contents and bilayer periods of the multilayered films can be controlled by means of adjusting of sputtering current of graphite target. Furthermore, the mechanical and tribological performances of the prepared films were appraised by nano-indentor, scratch measures, and ball-on-plate tribometer respectively. The results indicated that multilayer structure endowed the as-deposited TiC/GLC films outstanding mechanical and tribological properties, especially the multilayer film with 15.9 nm bilayer period deposited at 10 A sputtering current showed the excellent adhesion strength and hardness; Simultaneously it also exhibited the lowest average friction coefficient in the humid environment owing to its high content of sp2 hybrid carbon.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


1995 ◽  
Vol 384 ◽  
Author(s):  
Randolph E. Treece ◽  
P. Dorsey ◽  
M. Rubinstein ◽  
J. M. Byers ◽  
J. S. Horwitz ◽  
...  

ABSTRACTThick films (0.6 and 2.0 μm) of the colossal magnetoresistance (CMR) material, La0.7Ca0.3MnO3 (LCMO), have been grown by pulsed laser deposition (PLD). The films were grown from single-phase LCMO targets in 100 mTorr 02 pressures and the material deposited on (100) LaAlO3 substrates at deposition temperatures of 800°C. The deposited films were characterized by X-ray diffraction (XRD), magnetic field-dependent resistivity, and Rutherford backscattering spectroscopy (RBS). The LCMO films were shown by XRD to adopt an orthorhombic structure. Brief post-deposition annealing led to ~50,000% and ~12,000% MR effect in the 0.6 μm and 2.0 μm films, respectively.


Sign in / Sign up

Export Citation Format

Share Document