scholarly journals Structure and Characterization of TiC/GLC Multilayered Films with Various Bilayers Periods

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 787
Author(s):  
Weiqi Wang ◽  
Xiaoming Ling ◽  
Rui Wang ◽  
Wenhao Nie ◽  
Li Ji ◽  
...  

The spontaneously self-organizing multilayered graphite-like carbon (denoted as GLC) /TiC films with various bilayer periods in the range of 13.3–17.5 nm were deposited on silicon and 1Cr18Mn8Ni5N stainless steel substrates using closed field magnetron sputtering deposition facility. The microstructures and chemical compositions of the prepared multilayered films were characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy respectively. The self-organizing multilayered structures in all of the films consisted of titanium carbide layers and sp2-rich carbon layers periodically alternate arrangement. The TiC contents and bilayer periods of the multilayered films can be controlled by means of adjusting of sputtering current of graphite target. Furthermore, the mechanical and tribological performances of the prepared films were appraised by nano-indentor, scratch measures, and ball-on-plate tribometer respectively. The results indicated that multilayer structure endowed the as-deposited TiC/GLC films outstanding mechanical and tribological properties, especially the multilayer film with 15.9 nm bilayer period deposited at 10 A sputtering current showed the excellent adhesion strength and hardness; Simultaneously it also exhibited the lowest average friction coefficient in the humid environment owing to its high content of sp2 hybrid carbon.

2009 ◽  
Vol 75 ◽  
pp. 37-42
Author(s):  
P.L. Tam ◽  
Zhi Feng Zhou ◽  
P.W. Shum ◽  
K.Y. Li

Quaternary CrTiAlN hard coatings were deposited by closed field unbalanced magnetron sputtering ion plating technique onto steel substrates, and their structural, mechanical, and tribological properties after heat treatment in air at different temperatures (500-900 oC) were studied and compared by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indentation, and pin-on-disc (POD) tribometer, etc. The onset temperature of oxidation was determined by thermogravimetric analyser (TGA). The compositional depth profiles before and after the heat treatments were examined by X-ray photoelectron spectroscopy (XPS) in order to study the oxidation mechanism. The experimental results indicate that the CrTiAlN coatings have excellent oxidation resistance and thermal stability, and outperform the traditional hard coatings like TiN and TiAlN in terms of higher oxidation temperature, hardness, adhesion, and wear resistance. It is expected that the CrTiAlN coatings with superior properties should have better performance in dry high speed machining.


Author(s):  
K. Ganesh Kumar ◽  
P. Balaji Bhargav ◽  
C. Balaji ◽  
Ahmed Nafis ◽  
K. Aravinth ◽  
...  

Abstract Owing to high lithium ion conductivity and good stability with lithium metal, Li7La3Zr2O12 (LLZO—a solid electrolyte) has emerged as a viable candidate for solid-state battery applications. In the current study, Al-substituted LLZO (Al-LLZO) powder is synthesized using a typical solid-state reaction. The pellets are made with the synthesized powder and are subjected to annealing for different durations and its effect on the structural properties of the Al-LLZO is investigated in detail. Reitveld refinement of the powder X-ray diffraction pattern reveals that the sintered Al-LLZO belong to the cubic system with the Ia-3d space group at room temperature. Morphology and microstructural properties of sintered powder are analyzed using field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED), respectively. The FESEM image of LLZO pellets shows well-structured cubic grains spread evenly over on the surface after sintering. The chemical compositions of the sample are identified using energy dispersive X-ray analysis (EDAX). The surface chemistry of the prepared samples is examined by X-ray photoelectron spectroscopy (XPS), which states that the observed photoelectron signals from O 1s at about 531 eV and Li1s at 54.52 eV correspond to the Li-O bond in Al-LLZO. Raman spectra have been analyzed and the observed Raman peaks appearing at 299 cm−1, 393 cm−1, 492 cm−1, and 514 cm−1 were assigned to Eg, F2g, A1g, and F2g, respectively. Phase transformation from C-LLZO to the pyrochore LZO phase is noticed when the sample is sintered for 12 h at 1100 °C. The impedance analysis is carried out to measure the conductivity of the Al-LLZO pellet and is found to be 0.3 × 10−5 S cm−1, which is suitable for solid electrolyte applications in lithium ion batteries.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 466-469
Author(s):  
V. P. KONONOV ◽  
S. G. OVCHINNIKOV ◽  
E. P. VASILYEVA ◽  
V. N. ZABLUDA ◽  
V. M. POPEL ◽  
...  

Multilayered structures of 10 Fe layers (25 Å each) and 9 layers of Cu (50 Å) have been obtained by MBE technique using a 3-chambers MBE installation "Angara". For comparison Fe film with the thickness d = 250 Å have been prepared. The chemical composition and structure of the films were controlled by X-ray fluorescent analysis, Auger spectroscopy and electron microscopy measurements. Field dependencies of the magnetooptical Faraday effect were measured at different geometries. Spectral dependence of the Faraday effect revealed a maximum at 700 nm wavelength for this multilayered structure.


2019 ◽  
Vol 20 (2) ◽  
pp. 633-643
Author(s):  
Xiaopeng Qi ◽  
Junwei Chen ◽  
Qian Li ◽  
Hui Yang ◽  
Honghui Jiang ◽  
...  

Abstract There is an urgent need for an effective and long-lasting ceramic filter for point-of-use water treatment. In this study, silver-diatomite nanocomposite ceramic filters were developed by an easy and effective method. The ceramic filters have a three-dimensional interconnected pore structure and porosity of 50.85%. Characterizations of the silver-diatomite nanocomposite ceramic filters were performed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Silver nanoparticles were confirmed to be formed in situ in the ceramic filter. The highest silver concentration in water was 0.24 μg/L and 2.1 μg/L in short- and long-term experiments, indicating very low silver-release properties of silver-diatomite nanocomposite ceramic filter. The nanocomposite ceramics show strong bactericidal activity. When contact time with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of 105 colony forming units (CFU)/mL exceeded 3 h, the bactericidal rates of the four different silver content ceramics against E. coli and S. aureus were all 100%. Strong bactericidal effect against E. coli with initial concentration of 109 CFU/mL were also observed in ceramic newly obtained and ceramic immersed in water for 270 days, demonstrating its high stability. The silver-diatomite nanocomposite ceramic filters could be a promising candidate for point-of-use water treatment.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


Sign in / Sign up

Export Citation Format

Share Document