Growth twins in Bi2Ca1Sr2Cu2O8 superconductor single crystals

1990 ◽  
Vol 5 (5) ◽  
pp. 909-912 ◽  
Author(s):  
P. D. Han ◽  
A. Asthana ◽  
Z. Xu ◽  
D. A. Payne

Large-scale twin structures in single crystal Bi2Ca1Sr2Cu2O8 (2122) are reported for the first time. Symmetrical 90° (i.e., a-b) twins with a [110] type twin boundary were observed. A characteristic layer-growth morphology and jagged twin walls suggest that twin formation occurred layer by layer during crystal growth; i.e., the twins were growth twins. Hot-stage optical microscopy, x-ray diffraction, and electron microscopy results are discussed with reference to twin morphology.

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2007 ◽  
Vol 7 (2) ◽  
pp. 530-534 ◽  
Author(s):  
Chunyi Zhi ◽  
Yoshio Bando ◽  
Guozhen Shen ◽  
Chengchun Tang ◽  
Dmitri Golberg

Adopting a wet chemistry method, Au and Fe3O4 nanoparticles were functionalized on boron nitride nanotubes (BNNTs) successfully for the first time. X-ray diffraction pattern and transmission electron microscopy were used to characterize the resultant products. Subsequently, a method was proposed to fabricate heterojunction structures based on the particle-functionalized BNNTs. As a demonstration, BNNT-carbon nanostructure, BNNT-ZnO and BNNT-Ga2O3 junctions were successfully fabricated using the functionalized particles as catalysts.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jiwoong Heo ◽  
Daheui Choi ◽  
Jinkee Hong

We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4) nanoparticles, using layer-by-layer (LbL) self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1) a blended three-component LbL film consisting of a sequential poly(acrylic acid)/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride) layer and (2) a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride), poly(sodium-4-sulfonate), bPEI-ferrite, and poly(sodium-4-sulfonate) layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4) were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.


1998 ◽  
Vol 05 (01) ◽  
pp. 157-161 ◽  
Author(s):  
R. Gunnella ◽  
P. Castrucci ◽  
N. Pinto ◽  
P. Cucculelli ◽  
I. Davoli ◽  
...  

The influence of Sb as a surfactant on the formation of Si/Ge interface is studied by means of XPD (X-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge and Si core levels. The technique employed is particularly suitable for checking the film tetragonal distortion, the growth morphology and the sharpness of the interface. We found a layer by layer growth mode for 3 ML of Ge on Si(001) and related values of strain of the film close to the value predicted by the elastic theory which enforces the use of such a surfactant to obtain high quality and sharp heterostructures. In addition, studying the influence of 3 ML of the Si cap layer on the 3 ML Ge, we obtain no indication of Ge segregation into the Si cap layer. Finally, evidences of quality degradation after high temperature (T > 600° C ) annealing are shown.


2016 ◽  
Vol 16 (4) ◽  
pp. 3705-3709 ◽  
Author(s):  
Zhi-Wen Nie ◽  
Cheng-Hui Zeng ◽  
Gang Xie ◽  
Sheng-Liang Zhong

Homogeneously doped Yb3+ and Er3+ cerium-based coordination polymer (CP) microspheres have been successfully synthesized on a large scale through a simple solvothermal route with 2, 5-pyridinedicarboxylic acid (2, 5-H2PDC) as the organic linker. CeO2:Yb3+, Er3+ porous microspheres were obtained by annealing the corresponding CP microspheres at 600 °C for 4 h under atmospheric pressure. These as-prepared products were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersion X-ray (EDX) spectroscopy, Thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. The room temperature upconversion luminescent spectra of the as-prepared microspheres were carried out by 980 nm NIR light excitation. Interestingly, Yb3+ and Er3+ codoped CP microspheres give a single-band emission centered at 673 nm, while the CeO2:Yb3+, Er3+ microspheres give emission in green and red region, with red being the dominant emission. The emission intensity of the CeO2:Yb3+, Er3+ microspheres were much stronger than that of the Yb3+ and Er3+ codoped CP microspheres.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 479-485
Author(s):  
C. W. LAI ◽  
X. Y. ZHANG ◽  
H. C. ONG ◽  
J. Y. DAI ◽  
H. L. W. CHAN

Large-scale single crystalline In 2 O 3 nanowires were successfully synthesized on anodic alumina membranes by a simple thermal evaporation method at 570°C. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy studies revealed the formation of single crystalline In 2 O 3 nanowires with diameters of 50–100 nm and lengths of up to a few hundreds of micrometers. Cathodeluminescence study revealed existence of oxygen vacancies evidenced by a strong and broad emission at 470 nm with a shoulder at 400 nm. The growth mechanism of the nanostructures is also discussed.


2004 ◽  
Vol 19 (4) ◽  
pp. 1093-1104 ◽  
Author(s):  
Q. Luo ◽  
D.B. Lewis ◽  
P.Eh. Hovsepian ◽  
W-D. Münz

Cubic NaCl-B1 structured multilayer TiAlN/VN with a bi-layer thickness of approximately 3 nm and atomic ratios of (Ti+Al)/V = 0.98 to 1.15 and Ti/V = 0.55 to 0.61 were deposited by unbalanced magnetron sputtering at substrate bias voltages between -75 and -150 V. In this paper, detailed transmission electron microscopy and x-ray diffraction revealed pronounced microstructure changes depending on the bias. At the bias -75 V, TiAlN/VN followed a layer growth model led by a strong (110) texture to form a T-type structure in the Thornton structure model of thin films, which resulted in a rough growth front, dense columnar structure with inter-column voids, and low compressive stress of -3.8 GPa. At higher biases, the coatings showed a typical Type-II structure following the strain energy growth model, characterized by the columnar structure, void-free column boundaries, smooth surface, a predominant (111) texture, and high residual stresses between -8 and -11.5 GPa.


2010 ◽  
Vol 88 (12) ◽  
pp. 1256-1261 ◽  
Author(s):  
Guifang Sun ◽  
Faming Gao ◽  
Li Hou

Boron carbonitride (BCN) nanotubes have been successfully prepared using NH4Cl, KBH4, and ZnBr2 as the reactants at 480 °C for 12 h by a new benzene-thermal approach in a N2 atmosphere. As its by-product, a new form of carbon regular hexagonal nanocages are observed. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), transmission electron diffraction (TED), electron energy loss spectroscopy (EELS), and high-resolution transmission electron microscopy (HRTEM). The prepared nanotubes have uniform outer diameters in the range of 150 to 500 nm and a length of up to several micrometerss. The novel carbon hexagonal nanocages have a typical size ranging from 100 nm to 1.5 µm, which could be the giant fullerene cages of [Formula: see text] (N = 17∼148). So, high fullerenes are observed for the first time. The influences of reaction temperature and ZnBr2 on products and the formation mechanism of BCN nanotubes are discussed.


Sign in / Sign up

Export Citation Format

Share Document