Equilibrium phase diagrams for the systems PbO–SrO–CuO and PbO–CaO–SrO

1990 ◽  
Vol 5 (7) ◽  
pp. 1397-1402 ◽  
Author(s):  
Hitoshi Kitaguchi ◽  
Jun Takada ◽  
Kiichi Oda ◽  
Yoshinari Miura

In order to obtain essential information on the formation process of the high-Tc phase in the Bi, Pb–Sr–Ca–Cu–O system, subsolidus phase equilibrium in the systems PbO(PbO2)–SrO–CuO and PbO(PbO2)–CaO–SrO has been studied, mainly by XRD analysis. A pseudoternary Pb–Sr–Cu–O solid solution was newly found. This solid solution has a wide solubility range including its typical composition Pb2.03Sr3Cu0.73O7.70. It has a hexagonal structure with lattice parameters a = 10.11 and c = 7.11 in AU. Composition dependences of the lattice parameters and the decomposition (incongruent melting) temperature of (Ca1−xSrx)2PbO4 solid solution are also reported.

1990 ◽  
Vol 5 (5) ◽  
pp. 929-931 ◽  
Author(s):  
Hitoshi Kitaguchi ◽  
Jun Takada ◽  
Kiichi Oda ◽  
Yoshinari Miura

In order to obtain essential information on the formation process of the high-Tc phase in the Bi, Pb-Sr-Ca-Cu-O system, phase equilibria in the system PbO-CaO-CuO have been studied, mainly by x-ray diffraction analysis and thermal analysis. Temperature versus composition diagrams were established for the systems PbO-CuO(Cu2O) and PbO(PbO2)–CaO in air. Three invariant points were detected in these systems: a eutectic reaction (PbO + Ca2PbO4 = L) at 847 ± 6°C, a peritectic reaction (Ca2PbO4 = L + CaO) at 980 ± 2°C, and a eutectic reaction (PbO + CuO = L) at 789 ± 3°C. For the system PbO(PbO2)-CaO-CuO, subsolidus phase equilibrium in air was established. The liquidus was also examined at 780, 800, and 820°C, and a ternary (PbO-Ca2PbO4-CuO) eutectic point was detected at 772 ± 6°C.


2003 ◽  
Vol 67 (3) ◽  
pp. 509-516 ◽  
Author(s):  
S. Tetsopgang ◽  
J. Koyanagi ◽  
M. Enami ◽  
K. Kihara

AbstractHydroxylian pseudorutile in an adamellite from Cameroon has been identified using EPMA, FT-IR and single-crystal XRD analysis. TiO2 and Fe2O3 contents range between 60.6 and 67.9 wt.% and 22.2 and 36.5 wt.%, respectively, and totals vary from 90.1 to 98.1 wt.%. The SiO2 (0.03 —1.40 wt.%), Al2O3 (0.02—0.68 wt.%) and CaO (0.03—0.44 wt.%) contents increase systematically and MnO (0.04—0.69 wt.%) decreases slightly with decreasing Fe3+/Ti values. The MgO content is <0.06 wt.%. H2O contents (1.3—7.5 wt.%) are greater in parts of crystals with lower Fe3+/Ti, suggesting solid solution between the end-members Fe3+2Ti3O9 and Fe3+Ti3O6(OH)3. The lattice parameters are a = 2.85 Å and c = 4.57 Å with hexagonal symmetry and point group 6/mmm.


2003 ◽  
Vol 10 (04) ◽  
pp. 677-683 ◽  
Author(s):  
E. B. Hannech ◽  
N. Lamoudi ◽  
N. Benslim ◽  
B. Makhloufi

Intermetallic formation at 425°C in the aluminum–copper system has been studied by scanning electron microscopy using welded diffusion couples. Several Al–Cu phases predicted by the equilibrium phase diagram of the elements and voids taking place in the diffusion zone have been detected in the couples. The predominant phases were found to be Al 2 Cu 3 and the solid solution of Al in Cu, α. The growth of the intermetallic layer obeyed the parabolic law.


2016 ◽  
Vol 873 ◽  
pp. 18-22
Author(s):  
Ming Li Huang ◽  
Xue Shen ◽  
Hong Xiao Li

The equilibrium alloys closed to Mg-Nd side in the Mg-rich corner of the Mg-Zn-Nd system at 400°C have been investigated by scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The binary solid solutions Mg12Nd and Mg3Nd with the solubility of Zn have been identified. The maximum solubility of Zn in Mg12Nd is 4.8at%, and Mg12Nd phase can be in equilibrium with Mg solid solution. However, only when the solubility range of Zn in 26at%~32.2at%, Mg3Nd can be in two-phase equilibrium with Mg solid solution. As the results, two two-phase regions as Mg+Mg12Nd and Mg+Mg3Nd and a three-phase region as Mg+Mg12Nd+Mg3Nd in Mg-Nd-Zn ternary isothermal section at 400°C have been identified.


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $&#x203e;{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


2018 ◽  
Vol 383 ◽  
pp. 31-35 ◽  
Author(s):  
Alexey Rodin ◽  
Nataliya Goreslavets

The study of diffusion processes in the aluminum - copper system was carried out at the temperature 350 and 520 °C. Special attention was paid on the chemical composition of the system near Al/Cu interface. It was determined that the intermediate phases in the system, corresponding to the equilibrium phase diagram, were not formed at low temperature. At high temperature the intermediate phases forms starting with Cu - rich phases. In both cases supersaturated solid solution of copper in aluminum could be observed near the interface.


2018 ◽  
Vol 930 ◽  
pp. 79-84
Author(s):  
Juliana Simões Chagas Licurgo ◽  
Herval Ramos Paes Junior

In this work, copper-doped zinc oxide films (ZnO:Cu) were deposited by spray pyrolysis on glass substrates. The influence of doping concentration (0-10 at.%) on morphological, structural, optical and electrical properties of the ZnO:Cu films was investigated. Electrical characterization consisted in measuring the variation of electrical conductivity with temperature; they presented a typical semiconductor material behavior. Based on x-ray diffraction (XRD) analysis, it was able to confirm that the films are polycrystalline having a wurtzite hexagonal structure, preferentially oriented in the c-axis (002), and the crystallite size ranged from 41.60 to 50.70 nm. The optical characterization revealed that ZnO:Cu films present band gap energy between 3.18 and 3.27 eV. The films were homogeneous with good adhesion to the substrate. The results indicate the viability of using them in optoelectronic devices.


Author(s):  
Abd Elouahab Gahtar ◽  
Said Benramache ◽  
Abdelkader Ammari ◽  
Abdelwaheb Boukhachem

Abstract Nickel sulfide (NiS) thin film has been deposited on glass substrates by spray-pyrolysis at 325 ± 5 °C. The precursor aqueous solution was synthetized using hexahydrated nickel nitrates and thiourea. The structural, morphological, optical and electrical properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and four probes electrical measurements. The XRD analysis confirmed the hexagonal structure of NiS thin film, which was found to crystalize along [010] direction with an average crystallites size of 10.5 nm. The lattice parameters are a = b = 3.420 Å and c = 5.300 Å in the space group P63/mmc. The optical properties of the films were investigated through the transmittance and the reflectance measurements. The results revealed that the material exhibits a direct optical band gap of 1.03 eV. The elementary composition analysis confirmed the presence of Ni and S with a stoichiometry ratio (Ni/S) of 1.05. The morphology analysis revealed a homogenous crack-free, compact appearance and a granular surface in all scanned areas. The average roughness of the surface was 6.48 nm. On the other hand, the film exhibits a high electrical conductivity ca. 1.10 × 105 S/cm at room temperature. The above results show that the prepared NiS in this study has a good crystallization, dense morphology, good stoichiometric ratio and high conductivity; therefore, it stands as a potential candidate for application in supercapacitors as an electrode material.


Sign in / Sign up

Export Citation Format

Share Document