Brittle cleavage of L12 trialuminides

1990 ◽  
Vol 5 (8) ◽  
pp. 1639-1648 ◽  
Author(s):  
E. P. George ◽  
J. A. Horton ◽  
W. D. Porter ◽  
J. H. Schneibel

Three trialuminide alloys, binary Al–25Sc, ternary Al–25Zr–6Fe, and quaternary Al–23Ti–6Fe–5V, all having the cubic L12 structure, were investigated. All three alloys fracture in a brittle manner (fracture toughness, 2–3 MPa m½), predominantly by transgranular cleavage. Of nineteen cleavage facets examined in binary Al3Sc, seventeen were of the {110} type and only two were of the {100} type, consistent with our earlier work which showed that the cleavage plane occurring most frequently in quaternary Al–23Ti–6Fe–5V is also {110}. The room-temperature hardnesses and yield strengths (100–200 DPH and 100–270 MPa, respectively) of all three alloys are quite low (comparable to ductile L12 alloys like Ni3Al), indicating that there is significant dislocation activity in these materials. Consistent with this, transmission electron microscopy identified several APB-coupled dislocations with b - a/2〈110〉 gliding on the {111} planes in both binary Al–25Sc and quaternary Al–23Ti–6Fe–5V. The separations between the superpartials in Al–25Sc and Al–23Ti–6Fe–5V were measured to be 3.7 and 4 nm, respectively, giving APB energies of 313 and 274 mJ/m2, respectively. Auger analyses failed to detect any impurities on the cleavage facets themselves, or on second phase particles (or other potential cleavage crack nucleation sites). It is therefore concluded that brittle fracture in these alloys is not impurity-induced. Based on all the results obtained to date we conclude that the unusual brittleness of L12 trialuminides is related to their intrinsically low cleavage strength. Possible reasons for their low cleavage strength are discussed.

2019 ◽  
Vol 8 (2) ◽  
pp. 1 ◽  
Author(s):  
Amin Azimi ◽  
Gbadebo Moses Owolabi ◽  
Hamid Fallahdoost ◽  
Nikhil Kumar ◽  
Horace Whitworth ◽  
...  

This paper presents the microstructure and the mechanical behavior of nanocrystalline AA2219 processed by multi axial forging (MAF) at ambient and cryogenic temperatures. The X-ray diffraction pattern and transmission electron microscopy micrographs in the initial microstructure characterization indicate a more effective severe plastic deformation during the cryogenic MAF than the same process conducted at room temperature. MAF at cryogenic temperature results in crystallite size reduction to nanoscales as well as second phase particles breakage to finer particles which are the crucial factors to increasing the mechanical properties of the material. Fractography analysis and tensile tests results show that cryogenic forging does not only increase the mechanical strength and toughness of the alloys significantly, but also improves the ductility of the material in comparison with the conventional forging. In this comparative regard, cryogenic processing provides 44% increase in the tensile strength of the material only after 2 forging cycles when compared to the room temperature process. In addition, further forging process to the next cycles slightly enhances the tensile strength at the expense of ductility due to less ability of the dislocations to accumulate. However, the ductility of the ambient temperature forged samples decreases at a faster rate than that of cryoforged samples.


2000 ◽  
Vol 33 (5) ◽  
pp. 1217-1222
Author(s):  
A. Biswas ◽  
Madangopal K. ◽  
J. B. Singh ◽  
S. K. Roy ◽  
S. Banerjee

The complete identity of a second-phase precipitate detected by transmission electron microscopy in combustion-synthesized NiAl was established. The crystal structure, including the point group, the space group and the lattice parameters, was determined by convergent and selected-area electron diffraction techniques. Energy dispersive X-ray spectroscopy was used for the determination of the chemical composition. Analysis established the phase to be the solid solution of NiO in Al2O3and presented evidence of the hitherto unreported room-temperature solubility.


2014 ◽  
Vol 886 ◽  
pp. 36-40
Author(s):  
Rong Hua Zhang ◽  
Bao Hong Zhu ◽  
Xiao Ping Zheng

Heat-resistant Al-8.5Fe-1.3V-1.7Si aluminum alloys were prepared by spray forming technique. The phase transition of deposited alloys from room temperature to 500°C was measured by Differential Scanning Calorimeter. The organization and the second phases of the alloys were observed and studied by transmission electron microscopy. The research results show that No endothermic peak appears in the deposited alloys during heating process, there is no phase transition occur in the alloy during the heating process from room temperature to 500°C. The deposited alloys mainly include α-Al and α-Al12(Fe,V)3Si phase. Under the transmission electron microscopy, there are also a small amount of slug, fan-shaped, needle-like, block, strip second phases, these phases are Al12Fe3Si, Al8Fe2Si, θ-Al13Fe4, Al9FeSi3, Al6Fe.


2007 ◽  
Vol 551-552 ◽  
pp. 645-650
Author(s):  
Min Wang ◽  
Hong Zhen Guo ◽  
Y.J. Liu

According to the characteristic of appearing cavitation in the metals during superplastic deformation, the influence of strain rate on cavity evolvement, the influence of cavity on superplastic deformation capability, and the formation, development process of cavity were investigated for Al-Cu-Mg alloy (i.e. coarse–grained LY12). The results show that: ①The pore nucleation occurs not only at triangle grain boundaries, but also along nearby the second phase particles, and even within grains. The cavities at the triangle grain boundaries are present in V-shape, others near the second phase particles and within grains are present in O-shape. These cavities may result from disharmony slippage of grain boundaries. ②The tendency of cavity development decreases with increasing of strain-rate. In lower strain-rate condition, though Al-Cu-Mg alloy has better superplasticity, many big cavities in the specimen may reduce the room temperature properties of the alloy. In higher strain-rate condition, Al-Cu-Mg alloy has certain superplasticity and room temperature properties as well as few cavities forming. By analyzing, viscous layer on grain boundaries is very thin and grain sizes can be refined during their extruding and rotating each other in higher strain-rate superplastic deformation condition. ③Growth and coalescence of cavity are the main reason of the superplastic fracture of Al-Cu-Mg alloy. And small and a certain amount of cavities with dispersion and independence state are very useful to crystal boundary slippage.


1978 ◽  
Vol 100 (2) ◽  
pp. 195-199 ◽  
Author(s):  
W. J. Mills

The elastic-plastic fracture toughness (JIc) response of precipitation strengthened Alloy A-286 has been evaluated by the multi-specimen R-curve technique at room temperature, 700 K (800°F) and 811 K (1000°F). The fracture toughness of this iron-base superalloy was found to decrease with increasing temperature. This phenomenon was attributed to a reduction in the materials’s strength and ductility at elevated temperatures. Electron fractographic examination revealed that the overall fracture surface micromorphology, a duplex dimple structure coupled with stringer troughs, was independent of test temperature. In addition, the fracture resistance of Alloy A-286 was found to be weakened by the presence of a nonuniform distribution of second phase particles throughout the matrix.


1999 ◽  
Vol 14 (7) ◽  
pp. 2959-2965 ◽  
Author(s):  
Naoto Hirosaki ◽  
Tomohiro Saito ◽  
Fumio Munakata ◽  
Yoshio Akimune ◽  
Yuichi Ikuhara

Silicon nitride was fabricated by adding Y2O3 and Nd2O3 as sintering additives, sintering for 8 h at 1900 °C, and heat treating for 4 h at 2200 °C to enhance grain growth. The microstructure was investigated by scanning electron microscopy, high-resolution electron microscopy, energy dispersive x-ray spectroscopy (EDS), and electron microdiffraction. This material had a duplex microstructure composed of many fine grains and a few coarse grains. In β–Si3N4 grains, second-phase particles with the composition of liquid phase, Y–Nd–Si–O or Y–Nd–Si–O–N, in the size of 10–30 nm were observed. EDS spectra and microdiffraction patterns revealed that those were amorphous or crystalline particles of Y–Nd–apatite, (Y,Nd)10Si6O24N2. These particles were presumably formed during cooling by the precipitation of Y–Nd–Si–O–N, which was trapped in the β–Si3N4 grains as solid solution or trapped liquid. The results suggest that attention should be paid to the trace amounts of trapped elements in β–Si3N4 grains in trying to improve the thermal conductivity of sintered silicon nitride.


For a grain diameter d, the cleavage strength is proportional to d -1/2 , but intercepts the stress axis. Initiation of cleavage in second phase particles of a size that varies suitably with d could produce this relation. More likely, the cleavage strength is determined by the condition for propagation of a microcrack across a grain boundary. An explanation of the stress intercept is given in terms of the probability that the critical microcrack size is an increasing multiple of d as the grains become finer. Directly measured ductility transition temperatures agree with those deduced from the intersection of a temperature dependent flow stress with a temperature independent cleavage strength.


The paper treats micro-mechanical modes of crack extension, classed as ‘cracking’ and ‘rupture’ processes. In ‘cracking’, a cleavage crack nucleus propagates when a critical local tensile stress is attained, the magnitude of the stress being determined by the microstructure. Models for crack propagation from carbides and from martensite/ bainite ‘packets’ are discussed. The ‘rupture’ processes involve the initiation and growth of voids, centred on second-phase particles. Coalescence may arise from ‘internal necking’ or ‘fast shear’ and the factors associated with these two modes are described. Consideration is also given to the ways in which microstructure may produce scatter in toughness values and in growth-rates under fatigue loading, where both cyclic and monotonic failure modes are significant.


2014 ◽  
Vol 783-786 ◽  
pp. 2629-2634 ◽  
Author(s):  
Tian Lin Huang ◽  
Gui Lin Wu ◽  
Qing Liu ◽  
Xiao Xu Huang

A nanostructured Al-1%Si alloy containing dispersed Si particles was produced by heavily cold-rolling to study the effect of second phase particles on the tensile instability of nanostructured metals. Tensile tests were conducted on the as-deformed sample and the samples after recovery annealing treatments. The structural features of deformed and annealed samples were characterized by transmission electron microscopy. By comparing with the behavior of nanostructured commercial purity Al without dispersed particles, a remarked improvement in the tensile stability was found. This is related to a prevention of localized deformation by the presence of finely dispersed Si particles in the nanoscale matrix structure.


Sign in / Sign up

Export Citation Format

Share Document