Surface mechanical properties of aluminum implanted nickel and co-evaporated Ni–Al on nickel

1990 ◽  
Vol 5 (8) ◽  
pp. 1668-1683 ◽  
Author(s):  
Gary S. Was

Implantation of Al into nickel and co-evaporation of Ni–Al films onto nickel substrates followed by ion irradiation was conducted in order to investigate the mechanical properties of ion beam surface modifications and their relation to the composition and microstructure of the surface. Implantations were made using 400 keV Al+ to doses from 1 × 1015 to 6 × 1017 cm−2 at room temperature. Nickel films with 0–25% Al were co-evaporated onto nickel substrates and mixed using the same irradiation conditions but to a lower maximum dose. Hardness was measured using ultra-low load indentation, and residual stress was measured by the bending beam method. Results indicate that the primary contributor to the hardness increase of as-implanted surfaces is the irradiation-induced defects. The effect of Al in solution (γ phase) or Al in γ′ (Ni3Al) in either implanted or co-evaporated and mixed surfaces is evident only upon thermal treating to remove radiation damage. The high inherent hardness of the co-evaporated films is due to the small grain size of the film. The magnitude of the hardness in Al implanted nickel is very sensitive to the surface condition of the substrate. The observed hardness effects are all directly relatable to microstructure or phases present. Residual stresses change from tensile to compressive as a result of damage from low dose irradiation and heat treatment.

JOM ◽  
2021 ◽  
Author(s):  
Alexander J. Leide ◽  
Richard I. Todd ◽  
David E. J. Armstrong

AbstractSilicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.


1999 ◽  
Vol 5 (S2) ◽  
pp. 758-759
Author(s):  
W.L. Zhou ◽  
Y. Sasaki ◽  
Y. Ikuhara ◽  
C.J.O’Connor

Artificial defects generated by ion irradiation have been considered an efficient method to enhance the critical current density in superconducting materials. The mechanism of producing defects as flux pining centers is still an important issue since the efficiency of irradiation-induced defects in flux pinning strongly depends on their microstructures. Different types of defects have been found in heavy ion irradiation. However, there are few results that show light ion irradiation due to the target material selected, the type of light ion and energy, and the incident ion angle. Another factor is the difficulty of cross-sectional sample preparation. In this paper, a single crystal Bi2Sr2CaCu2O7-x with 11 MeV B5+ ion irradiation was observed by transmission electron microscope (TEM) from both plan and cross-sectional view.The Bi2Sr2CaCu2O7-x single crystals used for ion irradiation were prepared using the floating-zone melting method. The crystals were cleaved into thin sheets of about 20 μm thickness along the a-b plane and cut to about 2mmx2mm size.


1989 ◽  
Vol 157 ◽  
Author(s):  
S. Roorda ◽  
W.C. Sinke ◽  
J.M. Poate ◽  
D.C. Jacobson ◽  
S. Dierker ◽  
...  

ABSTRACTIon beams of keV and MeV energies have been used to bombard amorphous Si (a-Si), which had previously been annealed (‘relaxed’). Analysis by Raman spectroscopy and differential scanning calorimetry shows that when 1 out of every 20 Si atoms is displaced by a nuclear collision, the a-Si returns to its unrelaxed state and cannot be distinguished from as implanted a-Si. Moreover, the kinetics of the heat release on annealing of similarly bombarded crystalline Si (c-Si) are qualitatively identical to those of structural relaxation in a-Si. This implies that the population of ion beam induced defects in a-Si is very similar to that in c-Si. It also shows that defect annihilation is an important ingredient in the mechanism of structural relaxation of a-Si.


Carbon ◽  
2007 ◽  
Vol 45 (14) ◽  
pp. 2744-2750 ◽  
Author(s):  
Amit K. Chakraborty ◽  
R.A.J. Woolley ◽  
Yu.V. Butenko ◽  
V.R. Dhanak ◽  
L. Šiller ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 1167-1170 ◽  
Author(s):  
Vito Raineri ◽  
Fabrizio Roccaforte ◽  
Sebania Libertino ◽  
Alfonso Ruggiero ◽  
V. Massimino ◽  
...  

The defects formation in ion-irradiated 4H-SiC was investigated and correlated with the electrical properties of Schottky diodes. The diodes were irradiated with 1 MeV Si+-ions, at fluences ranging between 1×109cm-2 and 1.8×1013cm-2. After irradiation, the current-voltage characteristics of the diodes showed an increase of the leakage current with increasing ion fluence. The reverse I-V characteristics of the irradiated diodes monitored as a function of the temperature showed an Arrhenius dependence of the leakage, with an activation energy of 0.64 eV. Deep level transient spectroscopy (DLTS) allowed to demonstrate that the Z1/Z2 center of 4H-SiC is the dominant defect in the increase of the leakage current in the irradiated material.


Sign in / Sign up

Export Citation Format

Share Document