Modeling of diamond growth from a microwave plasma: C2H as growth species

1993 ◽  
Vol 8 (9) ◽  
pp. 2250-2264 ◽  
Author(s):  
Hans Rau ◽  
Friederike Picht

Diamond growth experiments were performed in a microwave plasma ball reactor on silicon wafers or on a molybdenum sheet provided with cones (stamped into the sheet with a punch). All substrates had been treated by scratching with diamond powder in advance. The gas mixture used was CH4/H2, sometimes with the addition of CO. Substrate temperatures ranged from 953 to 1428 K, pressures from 100 to 400 mbar, and microwave powers from 250 to 700 W. A strong preference of diamond growth was observed on the cones in the molybdenum substrates. This is interpreted as being caused by gas transport hindrance. The resulting deposition coefficient of the “active” species is about 0.1 under all conditions investigated. The deposition experiments on silicon substrates are numerically modeled in two steps. In the first step, temperature fields and electron density and energy distributions in pure hydrogen are calculated following the method described previously. The output of this first simulation step is taken as input data for the second step. The condition is applied that chemical reaction rates due to thermal or electronic activation and diffusional flows compensate each other at every point of the reactor. In this way stationary concentrations of the 13 species in 29 elementary reactions are computed and, from these, the expected deposition profile of diamond on the silicon substrate, assuming one of the carbon-containing species to be the “active” one. When the experimental deposition profiles are compared with the calculated ones, C2H as the “active” species gives the best match to all the experimental results. CH3 and C2H2 (and perhaps others) might contribute to the diamond growth to a limited extent only.

Author(s):  
S. A. Eremin ◽  
I. A. Leontiev ◽  
Yu. M. Yashnov ◽  
V. N. Anikin

In this paper was investigated effect of pumping a mixture of methane and hydrogen in a microwave discharge through layers of diamond powder on structure formation sediment during chemical infiltration from the gas phase. The infiltration process was implemented on the conditions of gas pumping through the layers of diamond powder, in the presence of a plasma discharge over the samples. It is established that in contempt of the size of the diamond powder, the growth of diamond from the gas phase occurs on the surface of the first layer, the growth of diamond from the gas phase stops when the second layer starts, and different allotropic modifications of carbon start to grow, in particular nanocrystalline graphite, carbon nanotubes, and graphite. Such a rapid transition between diamond growth and the growth of various allotropic carbon modifications is related with the screening of the plasma discharge by the first layer of diamond powder. Thus, the absence of direct contact of the microwave plasma discharge with the formed molecular hydrogen during its recombination leads to the fact that the concentration of atomic hydrogen is low to maintain the growth of diamond from the gas phase inside the layer of diamond powder.


1994 ◽  
Vol 9 (8) ◽  
pp. 2154-2163 ◽  
Author(s):  
K.J. Grannen ◽  
R.P.H. Chang

Microwave plasma-enhanced chemical vapor deposition of diamond films on silicon carbide and tungsten carbide (with 6% cobalt) surfaces using fluorocarbon gases has been demonstrated. No diamond powder pretreatment is necessary to grow these films with a (100) faceted surface morphology. The diamond films are characterized by scanning electron microscopy and Raman spectroscopy. The proposed nucleation and growth mechanism involves etching of the noncarbon component of the carbide by atomic fluorine to expose surface carbon atoms and diamond nucleation and growth on these exposed carbon atoms. Hydrogen is necessary in the growth process to limit the rapid etching of the carbide substrates by corrosive fluorine atoms.


1992 ◽  
Vol 7 (4) ◽  
pp. 934-939 ◽  
Author(s):  
Hans Rau ◽  
Friederike Picht

We performed diamond deposition experiments from a gas phase containing H2, CH4, and sometimes CO, using a microwave plasma ball reactor operating at 400 mbar pressure. The molybdenum substrates were stamped with a suitable tool to form a number of flattened cones on its surface. A strong preference for crystal growth on top of the cones was observed. Numerical calculations were used to solve the underlying thermal conduction and diffusion problems. At the substrate, the flow of the active species entering by diffusion from the bulk of the gas phase was balanced by those leaving the system due to incorporation in the crystals. Comparison with the experiments showed that at least 10% of the active species striking the surface are incorporated. Thus, the limitation of diamond growth in our investigation lies in gas phase transport and not in incorporation difficulties at the growing surface.


1989 ◽  
Vol 162 ◽  
Author(s):  
Y. Liou ◽  
A. Inspektor ◽  
R. Weimer ◽  
D. Knight ◽  
R. Messier

ABSTRACTDiamond thin films were deposited on different substrates at low temperatures (lowest temperature∼ 300°C, estimated) in a microwave plasma enhanced chemical vapor deposition (MPCVD) system. The deposited films were amorphous carbon or diamond films depending on the different gas mixtures used. The growth rate of diamond thin films was decreased by adding oxygen to the gas mixture. The addition of oxygen to the gas mixtures was found to be important for diamond growth at low temperatures. Different concentrations of oxygen have been added into the gas mixture. Without oxygen, the deposited films were white soots and easily scratched off. Increasing the oxygen input improved the quality of the Raman peaks and increased the film transpancy. The diamond films were also characterized by scanning electron microscopy (SEM).


2019 ◽  
Vol 946 ◽  
pp. 362-367 ◽  
Author(s):  
Boris Yur'ev ◽  
Vyacheslav Dudko

A manufacturing process was developed using an electric through-type furnace for capillary tubes used for single-use injection syringes. The process flow diagram consisting of a number of sequential steps and tube heat treatment conditions in protective atmosphere of pure hydrogen providing also for the tube purging with inert gas were considered. The electric furnace installed capacity and heating element dimensions were found as a result of the thermotechnical calculations. Industry research was carried out with a view to optimize the annealing process of capillary tubes in the electric furnace. A choice of material for the muffle fabrication was justified. Temperature fields inside the muffles were evaluated. The optimal flow of protective gas and the maximum allowable flow of purging gas in the form of nitrogen and argon were determined. Mechanical properties were studied for tubes (stocks), welded at the medical goods fabrication plant in Tumen and fabricated at the Pervouralsky Novotrubny Plant. Test data were obtained for optimal rates of tube movement in the furnace, allowing production of capillary tubes, acceptable for medical needle fabrication after annealing. It was demonstrated that capillary tube heat treatment, ensuring the required condition of both outside and inside surfaces, as well as required mechanical properties, is possible with the use of nitrogen as protective (instead of hydrogen) and purging gases. At that probability of better tube surface condition significantly grows.


CrystEngComm ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 2138-2146 ◽  
Author(s):  
G. Shu ◽  
V. G. Ralchenko ◽  
A. P. Bolshakov ◽  
E. V. Zavedeev ◽  
A. A. Khomich ◽  
...  

Homoepitaxial diamond growth may proceed with stops and resumptions to produce thick crystals. We found the resumption procedure to take place in a complex way, via a disturbance of step growth features, followed by the recovery after a certain time.


1995 ◽  
Vol 13 (3) ◽  
pp. 1617-1618 ◽  
Author(s):  
Zoltan Ring ◽  
Thomas D. Mantei ◽  
Spirit Tlali ◽  
Howard E. Jackson

2016 ◽  
Vol 109 (9) ◽  
pp. 092102 ◽  
Author(s):  
Hideaki Yamada ◽  
Akiyoshi Chayahara ◽  
Yoshiaki Mokuno

1994 ◽  
Vol 9 (8) ◽  
pp. 2148-2153 ◽  
Author(s):  
Z. Feng ◽  
K. Komvopoulos ◽  
I.G. Brown ◽  
D.B. Bogy

Diamond nucleation on unscratched silicon substrates coated with thin films of hard carbon was investigated experimentally with a microwave plasma-assisted chemical vapor deposition system. A new pretreatment process was used to enhance the nucleation of diamond. Relatively high diamond nucleation densities of ∼108 cm−2 were achieved by pretreating the carbon-coated silicon substrates with a methane-rich hydrogen plasma at a relatively low temperature for an hour. Scanning electron microscopy and laser Raman spectroscopy studies revealed that diamond nucleation occurred from nanometer-sized spherical particles of amorphous carbon produced during the pretreatment. The nanoparticles possessed a structure different from that of the original hard carbon film, with a broad non-diamond Raman peak centered at ∼1500 cm−1, and a high etching resistance in pure hydrogen plasma. The high diamond nucleation density is attributed to the significant percentage of tetrahedrally bonded (sp3) atomic carbon configurations in the nanoparticles and the presence of sufficient high-surface free-energy sites on the pretreated surfaces.


1993 ◽  
Vol 317 ◽  
Author(s):  
M.M. Waitew ◽  
S. Ismat Shah

ABSTRACTDiamond films were deposited in a microwave plasma chemical vapor deposition (MPCVD) system on Ta substrates using a mixture of hydrogen and methane gases. The films were grown for varying lengths of time to provide samples with no diamond growth to a continuous diamond film. These films were analyzed using X-ray photoelectron spectroscopy (XPS) in order to understand the time dependent interactions between the substrate and the incoming carbon flux. Photoelectron peaks in the Ta 4f, C Is and Ols regions have been analyzed. In the initial stages of growth, a layer of carbide forms on the substrate. As the substrate becomes supersaturated with carbon, graphite starts to form on the surface. A diamond peak begins to appear after about 30 Minutes of deposition.


Sign in / Sign up

Export Citation Format

Share Document