Characterization of sputtered iridium dioxide thin films

1998 ◽  
Vol 13 (5) ◽  
pp. 1318-1326 ◽  
Author(s):  
P. C. Liao ◽  
W. S. Ho ◽  
Y. S. Huang ◽  
K. K. Tiong

Iridium dioxide (IrO2) thin films, deposited on Si substrates by reactive rf sputtering method under various conditions, were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), electrical-conductivity, spectrophotometry, ellipsometry and Raman scattering measurements. The average grain sizes of the films were estimated by AFM. A grain boundary scattering model was used to fit the relation between the average grain size and electrical resistivity. The optical and dielectric constants were determined by the ellipsometry measurements. The results of the electrical and optical studies show a metallic character of the films deposited at higher temperatures. The results of XRD and Raman scattering indicate that the IrO2 films deposited at temperatures higher than 300 °C show the presence of (200) texture.

2011 ◽  
Vol 18 (03n04) ◽  
pp. 121-125 ◽  
Author(s):  
Y. L. DING ◽  
X. H. ZHANG ◽  
C. H. YANG ◽  
X. Y. ZHANG ◽  
H. L. YANG

Both ferroelectric Na0.5Bi0.5TiO3 (NBT) and K0.5Bi0.5TiO3 (KBT) are considered as the best known lead-free materials. In this experiment, we prepared NBT and KBT thin films on Pt/TiO2/SiO2/Si substrates by metalorganic solution deposition. The structural properties and surface morphologies were measured using X-ray diffraction and atomic force microscopy. The NBT and KBT films show higher leakage currents due to the oxygen vacancies in the films. The remanent polarization and coercive field of NBT (KBT) thin film are 9 (5.2) μC/cm2 and 50 (25) kV/cm at an applied electric field of 150 kV/cm. The relative dielectric constants of NBT and KBT are 340 and 316 at 1 MHz, respectively.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2013 ◽  
Vol 446-447 ◽  
pp. 306-311 ◽  
Author(s):  
Sudhanshu Dwivedi ◽  
Somnath Biswas

Mixed phase TiO2 thin films of rutile and anatase type crystal orientations were deposited on Si substrates by pulsed laser deposition (PLD) technique. When annealed at 800°C at 1 mbar oxygen pressure for 3 h, the deposited films transform into a single phase of rutile type. Structural and morphological studies of the as-deposited and annealed films were performed with X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, and atomic force microscopy (AFM). Photoluminescence (PL) spectroscopy was used for optical characterization of the annealed thin films.


1999 ◽  
Vol 596 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
P. S. Dobalt ◽  
R. S. Katiyart ◽  
S. Tirumala ◽  
...  

AbstractThin films of ferroelectric (SrBi2Ta2O9)x(Bi3TiNbO9)1-x layered structure (for x = 0.0, 0.2, … 1.0) were prepared by a metal organic solution deposition method on Pt/TiO2/SiO2/Si substrates. Raman spectroscopy, X-ray diffraction, atomic force microscopy (AFM), and electrical characterization techniques were utilized to study the inclusion of SrBi2Ta2O9 (SBT) in the Bi3TiNbO9 (BTN) system. The Raman spectra show frequency shifts and broadening of modes as x increases from 0.0 to 0.4, which are related to the nature of Sr and Bi in the A-sites, and Ta, Ti, and Nb in the B-sites. Smooth surfaces without any cracks or defects were evidenced in each of these films by AFM. These images also indicate that the grain size in the films increases with increasing SBT content in the BTN compound. Electrical measurements show that the remanent polarization (Pr) and the coercive field (Ec) values in the x=0.0 film (2 μC/cm2 and 30 kV/cm, respectively) increase to 12.5 μC/cm2 and 125 kV/cm for x=0.6. A decrease in these parameters was found for higher compositions.


2011 ◽  
Vol 25 (16) ◽  
pp. 2149-2156
Author(s):  
JICHENG ZHOU ◽  
XUQIANG ZHENG ◽  
ZHIJIE SHI ◽  
BAOXING ZHAO ◽  
FU LIU ◽  
...  

SiCO thin-films doped with aluminum (Al) prepared by alternate deposition of SiC and Al thin layers using Ar and O 2 as sputtering gas were deposited on n- Si substrates. The as-deposited thin-films were annealed under 600°C in nitrogen ambient. The thin-films have been characterized by atomic force microscopy, energy dispersive spectrometer, X-ray diffraction, fourier transform infrared spectroscopy, and photoluminescence spectra. The results showed that the introduction of Al promotes the formation of Si — C bonds, but hinders amorphous SiC to further transform to crystalline SiC . The doped Al would react with SiO x in the thin-films to form more Si particles which strongly affect the optical properties. After Al doped, there presented a seven times of enhancement emission band centered around 412 nm, which is ascribed to nanostructure Si -related defect centers embedded in the SiCO thin-films. The obtained results are expected to have important applications in modern optoelectronic devices.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


Sign in / Sign up

Export Citation Format

Share Document