A Structural Study of SrBi2Ta2O9 - Bi3TiNbO9 Ferroelectric Thin Films

1999 ◽  
Vol 596 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
P. S. Dobalt ◽  
R. S. Katiyart ◽  
S. Tirumala ◽  
...  

AbstractThin films of ferroelectric (SrBi2Ta2O9)x(Bi3TiNbO9)1-x layered structure (for x = 0.0, 0.2, … 1.0) were prepared by a metal organic solution deposition method on Pt/TiO2/SiO2/Si substrates. Raman spectroscopy, X-ray diffraction, atomic force microscopy (AFM), and electrical characterization techniques were utilized to study the inclusion of SrBi2Ta2O9 (SBT) in the Bi3TiNbO9 (BTN) system. The Raman spectra show frequency shifts and broadening of modes as x increases from 0.0 to 0.4, which are related to the nature of Sr and Bi in the A-sites, and Ta, Ti, and Nb in the B-sites. Smooth surfaces without any cracks or defects were evidenced in each of these films by AFM. These images also indicate that the grain size in the films increases with increasing SBT content in the BTN compound. Electrical measurements show that the remanent polarization (Pr) and the coercive field (Ec) values in the x=0.0 film (2 μC/cm2 and 30 kV/cm, respectively) increase to 12.5 μC/cm2 and 125 kV/cm for x=0.6. A decrease in these parameters was found for higher compositions.

2011 ◽  
Vol 18 (03n04) ◽  
pp. 121-125 ◽  
Author(s):  
Y. L. DING ◽  
X. H. ZHANG ◽  
C. H. YANG ◽  
X. Y. ZHANG ◽  
H. L. YANG

Both ferroelectric Na0.5Bi0.5TiO3 (NBT) and K0.5Bi0.5TiO3 (KBT) are considered as the best known lead-free materials. In this experiment, we prepared NBT and KBT thin films on Pt/TiO2/SiO2/Si substrates by metalorganic solution deposition. The structural properties and surface morphologies were measured using X-ray diffraction and atomic force microscopy. The NBT and KBT films show higher leakage currents due to the oxygen vacancies in the films. The remanent polarization and coercive field of NBT (KBT) thin film are 9 (5.2) μC/cm2 and 50 (25) kV/cm at an applied electric field of 150 kV/cm. The relative dielectric constants of NBT and KBT are 340 and 316 at 1 MHz, respectively.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2013 ◽  
Vol 446-447 ◽  
pp. 306-311 ◽  
Author(s):  
Sudhanshu Dwivedi ◽  
Somnath Biswas

Mixed phase TiO2 thin films of rutile and anatase type crystal orientations were deposited on Si substrates by pulsed laser deposition (PLD) technique. When annealed at 800°C at 1 mbar oxygen pressure for 3 h, the deposited films transform into a single phase of rutile type. Structural and morphological studies of the as-deposited and annealed films were performed with X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, and atomic force microscopy (AFM). Photoluminescence (PL) spectroscopy was used for optical characterization of the annealed thin films.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Jeremy West Mares ◽  
Ryan Casey Boutwell ◽  
Matthew Thomas Falanga ◽  
Amber Scheurer ◽  
Winston Vaughan Schoenfeld

AbstractWe report on the heteroepitaxial growth of high-quality single crystal cubic ZnxMg1-xO and NiyMg1-yO thin films by radio frequency oxygen plasma-assisted molecular beam epitaxy (RF-MBE). Film compositions over the ranges x = 0 to x = 0.65 and y = 0 to y = 1 have been grown on lattice-matched MgO (100) and characterized optically, morphologically, compositionally, and electrically. Both of these ternary materials are shown to have bandgaps which vary directly as a function of transition metal (Ni or Zn) concentration. Optical transmission measurements of NiyMg1-yO show the bandgap to shift continuously over the approximate range 3.5 eV (for NiO) to 4.81 eV (for y=0.075). Similarly, the bandgap of cubic ZnxMg1-xO is shifted from about 4.9 eV (for x = 0.65) to 6.25 eV (for x=0.12). Films exhibit good morphological quality and typical roughness of NiyMg1-yO films is 5 Å while that of ZnxMg1-xO is less than 15 Å, as measured by atomic force microscopy (AFM). X-ray diffraction (XRD) is employed to confirm crystal orientation and to determine the films' lattice constants. Film compositions are interrogated by Rutherford Backscattering (RBS) and electrical characterization is made by room-temperature Hall measurements.


2008 ◽  
Vol 587-588 ◽  
pp. 273-277 ◽  
Author(s):  
Mattia Longhin ◽  
Alain J. Kreisler ◽  
Annick F. Dégardin

The terahertz domain (500 GHz - 5 THz) has been object of unceasing research activities, due to the wide range of conceivable applications in these fields. This study focuses on the development of semiconducting YBa2Cu3O6+x (YBCO) thin films to be used as sensitive elements on future uncooled terahertz imagers working on a thermal principle. YBCO thin films have been hollow-cathode sputtered on MgO single-crystals under different conditions. Electrical and structural characterizations have then been carried out. The resistivity of the thin films and the temperature coefficient of resistance (TCR) have been determined. X-ray diffraction and atomic force microscopy analyses have then been performed. If compared with materials currently used as sensing element in commercial near-infrared imagers, electrical characterization shows values of the TCR comparable to amorphous silicon and almost two times better than VOx-compounds.


2000 ◽  
Vol 655 ◽  
Author(s):  
M.W. Cole ◽  
P.C. Joshi ◽  
E. Ngo ◽  
C.W. Hubbard ◽  
U. Lee ◽  
...  

AbstractWe have investigated the structural, compositional, interfacial, surface morphological and dielectric properties of Ba0.6Sr0.4TiO3 solid solution thin films La doped from 0 to 10 mol%. The doped thin films were prepared by the metalorganic solution deposition technique using carboxylate-alkoxide precursors. After post-deposition annealing in oxygen ambient at 750 °C the films were characterized via x-ray diffraction, Auger electron microscopy, field emission scanning electron microscopy, and atomic force microscopy. The electrical measurements were achieved in the metal-insulator-metal (MIM) configuration with Pt as the top and bottom electrode. Our results demonstrated that La doping had a strong effect on the films microstructural, dielectric and insulating properties. Specifically, 1 mol% La doped BST films exhibited a lower dielectric constant, 283 and higher resistivity 31.4×1013 W-cm with respect to that of undoped BST. The loss tangent and tunability (at 100 kHz) of the 1 mol% La doped BST films were 0.019 and 21% (at E=300kV/cm) respectively.


1998 ◽  
Vol 13 (5) ◽  
pp. 1318-1326 ◽  
Author(s):  
P. C. Liao ◽  
W. S. Ho ◽  
Y. S. Huang ◽  
K. K. Tiong

Iridium dioxide (IrO2) thin films, deposited on Si substrates by reactive rf sputtering method under various conditions, were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), electrical-conductivity, spectrophotometry, ellipsometry and Raman scattering measurements. The average grain sizes of the films were estimated by AFM. A grain boundary scattering model was used to fit the relation between the average grain size and electrical resistivity. The optical and dielectric constants were determined by the ellipsometry measurements. The results of the electrical and optical studies show a metallic character of the films deposited at higher temperatures. The results of XRD and Raman scattering indicate that the IrO2 films deposited at temperatures higher than 300 °C show the presence of (200) texture.


2011 ◽  
Vol 25 (16) ◽  
pp. 2149-2156
Author(s):  
JICHENG ZHOU ◽  
XUQIANG ZHENG ◽  
ZHIJIE SHI ◽  
BAOXING ZHAO ◽  
FU LIU ◽  
...  

SiCO thin-films doped with aluminum (Al) prepared by alternate deposition of SiC and Al thin layers using Ar and O 2 as sputtering gas were deposited on n- Si substrates. The as-deposited thin-films were annealed under 600°C in nitrogen ambient. The thin-films have been characterized by atomic force microscopy, energy dispersive spectrometer, X-ray diffraction, fourier transform infrared spectroscopy, and photoluminescence spectra. The results showed that the introduction of Al promotes the formation of Si — C bonds, but hinders amorphous SiC to further transform to crystalline SiC . The doped Al would react with SiO x in the thin-films to form more Si particles which strongly affect the optical properties. After Al doped, there presented a seven times of enhancement emission band centered around 412 nm, which is ascribed to nanostructure Si -related defect centers embedded in the SiCO thin-films. The obtained results are expected to have important applications in modern optoelectronic devices.


2013 ◽  
Vol 745-746 ◽  
pp. 599-604 ◽  
Author(s):  
Xue Ying Chen ◽  
Lei Wang ◽  
Jin Bao Xu ◽  
Liang Bian ◽  
Bo Gao

Mn-Co-Ni-O (Mn:Co:Ni=1.74:0.72:0.54, MCN) thin films with single cubic spinel structure were prepared on Si substrates by metal organic solution deposition (MOSD) method at different annealing temperatures. The effects of annealing temperature on the phase component, crystalline microstructure, surface morphology and electrical properties of the MCN thin films were studied. According to the results of x-ray diffraction pattern, the MCN thin film annealed at 650 had spinel structure. Observation with field emission scanning electron microscope (FE-SEM) on the MCN thin films showed that the grain size increased with increasing annealing temperature. The resistance measured at room-temperature was 18.143, 12.457, 2.435 and 3.141MΩ for the MCN thin films annealed at 650, 700, 750 and 800, respectively. The values of thermistor constant (B30/85) and activation energy (Ea) were in the range of 3260-4840K and 0.28-0.42eV, respectively.


2021 ◽  
Vol 900 ◽  
pp. 112-120
Author(s):  
Souad G. Khalil ◽  
Mahdi M. Mutter

This work presents the development of n-type (TiO2) and p-type (ZnO) gas-sensitive materials from ZnO doped TiO2 thin films prepared by pulsed laser deposition technique (PLD) on a glass substrate as a gas sensor of CO2 gas. TiO2 gas-sensing layers have been deposited over a range of ZnO content (0, 20, and 40) wt %. The obtained thin films analysis by atomic force microscopy (AFM), and X-ray diffraction (XRD). Electrical characterization shows that TiO2:ZnO thin films were p-type conductivity and ZnO added was unable to change the composition to the n-type conductivity. There are notable gas-sensing response differences between n-type and p-type ZnO doped TiO2 thin film. The responses toward all tested oxidizing gases tend to increase with operating temperature for the n-type TiO2 films. Besides, the p-type ZnO doping results in a significant response improvement toward tested oxidizing gases such as CO2 gas at the low operating temperature of 60 °C.


Sign in / Sign up

Export Citation Format

Share Document