Identification of Cl and Na Impurities in Inclusions of a Vapor-grown CdTe Doped with Zn and Cl

2002 ◽  
Vol 17 (5) ◽  
pp. 1069-1073 ◽  
Author(s):  
V. Corregidor ◽  
V. Babentsov ◽  
M. Fiederle ◽  
T. Feltgen ◽  
K. Benz ◽  
...  

Morphology and analysis of composition of inclusions were done by secondary electron microscopy and spatially resolved energy-dispersive analysis of x-ray on semiintrinsic CdTe:Cl and CdTe:Zn:Cl crystals grown from the vapor phase by the modified Markov technique and on undoped CdTe crystals grown from the melt by the Bridgman method. In CdTe:Cl and CdTe:Zn:Cl crystals nonstoichiometric inclusions of about 10–20 μm were found, which contain high concentrations of Cl and Na impurities. The Cl is concentrated in small precipitates of 1–2 μm inside these inclusions. After short-time low-temperature annealing (600 °C), the inclusions mostly disappeared.

Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


1964 ◽  
Vol 134 (2A) ◽  
pp. A485-A491 ◽  
Author(s):  
S. Mascarenhas ◽  
D. A. Wiegand ◽  
R. Smoluchowski

2012 ◽  
Vol 198-199 ◽  
pp. 99-102
Author(s):  
Qing Gang Kong ◽  
Hai Yan Qian

Magnesium nitrate was used as additive for synthesis of Mg(OH)2 (MH) nanoparticles at low temperature (70°C). Mg(OH)2 nanoparticles have platelet-like structure and approximately 40-60nm in thicknesses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the crystal phase. The supersaturation degree of solution effects the size and morphology of MH nanoparticles.


Author(s):  
Céline Roux-Byl ◽  
David Berardan

We report on the intrinsic non-stoichiometry and the influence of fluorine doping on the low temperature transport properties of layered oxysulfide LaOPbBiS3. From X-ray diffraction coupled to electron microscopy studies,...


2018 ◽  
Vol 18 (9) ◽  
pp. 5210-5213 ◽  
Author(s):  
Hongwen Liu ◽  
Guanhua Zhang ◽  
Pierre Richard ◽  
Lingxiao Zhao ◽  
Gen-Fu Chen ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Jialin Zhu ◽  
Chao Deng ◽  
Yahui Liu ◽  
Nan Lin ◽  
Shifeng Liu

One hundred and thirty-five degree clock rolling significantly improves the texture homogeneity of tantalum sheets along the thickness, but a distinctly fragmented substructure is formed within {111} (<111>//normal direction (ND)) and {100} (<100>//ND) deformation grains, which is not suitable to obtain a uniform recrystallization microstructure. Thus, effects of different annealing temperatures on the microstructure and texture heterogeneity of tantalum sheets along the thickness were investigated by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the texture distribution along θ-fiber and γ-fiber is irregular and many large grains with {111} orientation develop during annealing at high temperature. However, low-temperature annealing can not only weaken the texture intensity in the surface and the center layer but also introduce a more uniform grain size distribution. This result can be attributed to the subgrain-nucleation-dominated recrystallization mechanism induced by recovery at low temperature, and moreover, a considerable decline of recrystallization driving force resulting from the release of stored energy in the deformation matrix.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2016 ◽  
Vol 697 ◽  
pp. 565-571 ◽  
Author(s):  
Rui Zhang ◽  
Pekka Taskinen

Phase equilibria of the BaO-SiO2-Al2O3 ternary system was experimentally investigated using a quenching technique and analyzed by Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Analysis (EDS) and X-ray Powder Diffraction (XRD). A ternary compound was confirmed in the present work. The liquidus composition in equilibrium with the ternary compound at 1500 °C were quantified. The isothermal sections of the BaO-SiO2-Al2O3 ternary system at 1400 °C, 1500 °C, 1600 °C, and 1700 °C were calculated. Based on the data acquired, the isothermal section at 1500 °C was constructed.


Sign in / Sign up

Export Citation Format

Share Document