Fabrication, characterization, and leach testing of hollandite, (Ba,Cs)(Al,Ti)2Ti6O16

2002 ◽  
Vol 17 (10) ◽  
pp. 2578-2589 ◽  
Author(s):  
M. L. Carter ◽  
E. R. Vance ◽  
D. R. G. Mitchell ◽  
J. V. Hanna ◽  
Z. Zhang ◽  
...  

The dissolution in de-ionized water (DIW) at 90 and 150 °C of Cs and Ba from mechanically polished Cs-doped Ba hollandite samples is essentially congruent. The normalized Ba and Cs release rates were <0.001 g/m2/day after 56 days in DIW at 90 °C, and the Ba normalized release rate of a Cs-free sample was 0.01 g/m2/day after 56 days in DIW at 150 °C. Varying the pH between approximately 2.5 and 12.9 affected only the Ba dissolution rates of hollandite by half an order of magnitude. The dissolution rates of all species decrease with increasing leaching time due to the formation of partly impervious surface coatings of Al- and Ti-rich species. These surface coatings were investigated by scanning electron microscopy, and in some cases by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy.

2002 ◽  
Vol 744 ◽  
Author(s):  
Ganesan Suryanarayanan ◽  
Anish A. Khandekar ◽  
Brian E. Hawkins ◽  
Thomas F. Kuech ◽  
Susan E. Babcock

ABSTRACTThe microstructure of epitaxial InAs thin films grown by MOCVD on mask-patterned “LEO” (lateral epitaxial overgrowth) GaAs and on unpatterned GaAs substrates was studied using double-crystal x-ray diffraction, scanning electron microscopy and cross-sectional transmission electron microscopy. This paper describes the improvement in crystal quality (factor of 20 reduction in x-ray rocking curve width), the order of magnitude reduction in dislocation density, and the rearrangement of the remaining extended defects that were observed in the LEO material when compared to the film grown on the unpatterned wafer.


2008 ◽  
Vol 8 (5) ◽  
pp. 2516-2521 ◽  
Author(s):  
Pi-Chuen Tsai ◽  
Jueh-Yu Chiang ◽  
Yen-Fei Hwang

Depositions of titanium-containing diamond-like carbon (Ti-DLC) films were conducted by mixing C+ and Ti+ plasma streams originated from cathodic arc plasma sources in argon (Ar). The deposition was processed at Ti target current ranging from 20 Amp to 70 Amp. Film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS). Film microstructures were evaluated using field emission scanning electron microscopy (FEGSEM), an atomic force microscope (AFM), X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HRTEM). Mechanical properties were investigated by using a nanoindentation tester and ball on disc wear test. Results shows that surface roughness (Ra) of the films ranged between 2.4 and 7.2 nm and roughness increased relative to the increase in Ti target current. The FESEM studies showed that the surface micrographs of Ti-DLC films revealed a cauliflower-like microstructure and the cross-sectional micrograph revealed a snake-skin like structure. HRTEM studies showed that the Ti-DLC films consisted of nano scale TiC particles which were comparable with low angle XRD and XPS results. XPS analysis established that the Ti2p spectrum is present when the Ti target current reaches 30 Amp or higher. Ti concentration increased as the Ti target current was increased. An extremely thin TiO2 layer exists on the top of the Ti-DLC films which was comparable with the AES results. The film thickness which could be deposited for Ti-DLC is much higher than that of conventional DLC films. Nanoindentation tests show that the nanohardness of the films ranging 15–22 GPa, with Er values ranging from 145 to 175 GPa. The wear test demonstrates the friction coefficient of the 420SS substrate, DLC and Ti-DLC films were about 0.8, 0.3 and 0.2, respectively. Obviously, the friction coefficients of the Ti-DLC films were lower than that of the DLC films.


1996 ◽  
Vol 426 ◽  
Author(s):  
T. Wada ◽  
Y. Hashimoto ◽  
K. Kusao ◽  
N. Kohara ◽  
T. Negami ◽  
...  

AbstractCu-rich Cu(In, Ga)Se2 (CIGS) films were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray fluorescence spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS). The Cu-rich CIGS film were treated in KCN and NH3 solutions. In the as-deposited Cu-rich CIGS film, the cation ratio of Cu/(In+Ga) at the surface exceeded the bulk value. Cross-sectional TEM of the KCN-treated film suggested that Cu2-xSe existed both at the grain boundaries and on the grains near the surface of the Cu-rich CIGS film. The Cu2-xSe was completely removed by the treatment in the KCN solution and was removed only at the front surface by treatment in the NH3 solution.


2004 ◽  
Vol 19 (10) ◽  
pp. 3009-3018 ◽  
Author(s):  
Kyung-Hwan Lee ◽  
Jin-Kook Yoon ◽  
Gyeung-Ho Kim ◽  
Jung-Mann Doh ◽  
Kyung-Tae Hong ◽  
...  

Growth behavior and microstructure of oxide scale formed on MoSi2 coating by cyclic oxidation testing in air at 500 °C were investigated using field emission scanning electron microscopy, cross-sectional transmission electron microscopy, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy. MoSi2 coating was prepared by chemical vapor deposition of Si on a Mo substrate at 1100 °C for 5 h using SiCl4–H2 precursor gas mixtures. After the incubation period of about 454 cycles, accelerated oxidation behavior was observed in MoSi2 coating and the weight gain increased linearly with increasing oxidation cycles. Microstructural analyses revealed that pest oxide scale was formed in three sequential processes. Initially, nanometer-sized crystalline Mo4O11 particles were formed with an amorphous SiO2 matrix at MoSi2 interface region. Inward diffusing oxygen reacted with Mo4O11 to form Mo9O26 nano-sized particles. At final stage of oxidation, MoO3 was formed from Mo9O26 with oxygen and growth of MoO3 took place forming massive precipitates with irregular and wavy shapes. The internal stress caused by the growth of massive MoO3 precipitates and the volatilization of MoO3 was attributed to the formation of many lateral cracks into the matrix leading to pest oxidation of MoSi2 coating.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


Sign in / Sign up

Export Citation Format

Share Document