Lateral Epitaxial Overgrowth of InAs on (100) GaAs Substrates

2002 ◽  
Vol 744 ◽  
Author(s):  
Ganesan Suryanarayanan ◽  
Anish A. Khandekar ◽  
Brian E. Hawkins ◽  
Thomas F. Kuech ◽  
Susan E. Babcock

ABSTRACTThe microstructure of epitaxial InAs thin films grown by MOCVD on mask-patterned “LEO” (lateral epitaxial overgrowth) GaAs and on unpatterned GaAs substrates was studied using double-crystal x-ray diffraction, scanning electron microscopy and cross-sectional transmission electron microscopy. This paper describes the improvement in crystal quality (factor of 20 reduction in x-ray rocking curve width), the order of magnitude reduction in dislocation density, and the rearrangement of the remaining extended defects that were observed in the LEO material when compared to the film grown on the unpatterned wafer.

2002 ◽  
Vol 17 (10) ◽  
pp. 2578-2589 ◽  
Author(s):  
M. L. Carter ◽  
E. R. Vance ◽  
D. R. G. Mitchell ◽  
J. V. Hanna ◽  
Z. Zhang ◽  
...  

The dissolution in de-ionized water (DIW) at 90 and 150 °C of Cs and Ba from mechanically polished Cs-doped Ba hollandite samples is essentially congruent. The normalized Ba and Cs release rates were <0.001 g/m2/day after 56 days in DIW at 90 °C, and the Ba normalized release rate of a Cs-free sample was 0.01 g/m2/day after 56 days in DIW at 150 °C. Varying the pH between approximately 2.5 and 12.9 affected only the Ba dissolution rates of hollandite by half an order of magnitude. The dissolution rates of all species decrease with increasing leaching time due to the formation of partly impervious surface coatings of Al- and Ti-rich species. These surface coatings were investigated by scanning electron microscopy, and in some cases by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


1997 ◽  
Vol 467 ◽  
Author(s):  
T.-M. John ◽  
J. Bläsing ◽  
P. Veit ◽  
T. Drüsedau

ABSTRACTAmorphous Ge1-xCx alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly proof the existence of a segregation of the components and cluster formation already during deposition. The temperature dependence of the electronic conductivity in the as-prepared films follows the Mott' T−1/4 law, indicating transport by a hopping process. After annealing at 870 K, samples with x≤0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the σ(T) curves show a behaviour which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.


1994 ◽  
Vol 340 ◽  
Author(s):  
J. C. Chen ◽  
Bing Yang ◽  
F. Semendy ◽  
W. W. Clark ◽  
P. R. Boyd ◽  
...  

ABSTRACTHigh-quality ZnSe epilayers on GaAs substrates have been grown by MOCVD. Diethylzinc (DEZn) and diethylselenide (DESe) were used as source materials. Growth studies were done at 400°C under different growth conditions in an atmospheric pressure MOCVD reactor. The as-grown ZnSe epilayers were characterized by a wide variety of techniques, such as double crystal x-ray diffraction, low-temperature photoluminescence (PL), transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS), and scanning electron microscopy (SEM).The results show excellent structural and optical properties of ZnSe. The best material was grown on undoped GaAs at the VI/II ratio near unity. The full-width-at-half-maximum (FWHM) of ZnSe (∼0.2/μm thick) x-ray peak as low as 90 arc seconds was achieved. TEM results also show very low defect density. The density of stacking faults is less than 105/cm2 which is four orders of magnitude less than that of samples grown by conventional MBE [J. Petruzzello et al. J. Appl. Phys. 63, 2299 (1988)] and MOCVD [J.L. Batstone et al. Philos. Mag A, 66, 609, 1992]. The spacing between misfit dislocations is between 5 to 10,μm which is one order of magnitude larger than that of reported sample of comparable thickness.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


1994 ◽  
Vol 356 ◽  
Author(s):  
Kyoung-Ik Cho ◽  
Sahn Nahm ◽  
Sang-Gi Kim ◽  
Seung-Chang Lee ◽  
Kyung-Soo Kim ◽  
...  

AbstractSi/Si0.8Ge0.2/Si(001) structures were grown at various growth temperatures (250 ∼ 760 °C) using molecular beam epitaxy, and the variation of strain and microstructure of the film was investigated using double crystal X-ray diffractometry and transmission electron microscopy. SiGe films with good single crystallinity were obtained at the growth temperatures of 440 ∼ 600 °C. For the samples grown below 350 °C, an amorphous SiGe film was developed over the SiGe single crystalline layer with a jagged amorphous/crystalline (a/c) interface, and many defects such as stacking faults and microtwins were formed below the a/c interface. Dislocations were developed through out the films for the samples grown above 680 °C. In addition, for the samples grown below 680 °C, the amount of in-plane strain of the SiGe film was found to be about − 8×l0−3 without strain relaxation. However, the SiGe films grown at 760 °C have small in-plain strain of − 4×l0−3 and large strain relaxation of 50%.


1990 ◽  
Vol 5 (4) ◽  
pp. 746-753 ◽  
Author(s):  
R. W. Johnson ◽  
C. M. Garland

We describe a low-temperature solid-state interdiffusion technique that allows reaction between spatially separated reacting species and its application in the Al–Ru alloy system. This technique uses a liquid-metal solvent (Bi) as a medium for the transfer of Al to the surface of Ru powder where reaction occurs with the formation of nanocrystalline AlxRu1−x product phases. X-ray diffraction measurements are used to follow the time and temperature dependence of the reaction. Cross-sectional transmission electron microscopy allows direct imaging of the growth and morphology of the AlxRu1−x product phases.


2006 ◽  
Vol 911 ◽  
Author(s):  
Hui Chen ◽  
Guan Wang ◽  
Yi Chen ◽  
Xiaoting Jia ◽  
Jie Bai ◽  
...  

AbstractCarrot-like defects in a 7&#61616; off-cut (from [0001] toward <1-210> direction) 4H-SiC wafer with a 36μm thick 4H-SiC epilayer have been investigated using Nomarski optical microscopy, synchrotron white beam x-ray topography (SWBXT), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray topographs confirm that threading screw dislocations are often associated with the carrots. Cross-sectional TEM observation confirms that a prismatic stacking fault exists below the carrot. This fault was found to show contrast in all observed diffraction geometries except for g=0004. A model for the mechanism of formation of this type of defect during epitaxial growth is proposed.


Sign in / Sign up

Export Citation Format

Share Document