scholarly journals Improvement of Photocatalytic Performance for the g-C3N4/MoS2 Composite Used for Hypophosphite Oxidation

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Guan ◽  
Kuang He ◽  
Jianwei Du ◽  
Yong Wen ◽  
Mingshan Li ◽  
...  

The synthesized g-C3N4/MoS2 composite was a high-efficiency photocatalytic for hypophosphite oxidation. In this work, a stable and cheap g-C3N4 worked as the chelating agent and combined with the MoS2 materials. The structures of the fabricated g-C3N4/MoS2 photocatalyst were characterized by some methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). Moreover, the photocatalytic performances of various photocatalysts were measured by analyzing the oxidation efficiency of hypophosphite under visible light irradiation and the oxidation efficiency of hypophosphite using the g-C3N4/MoS2 photocatalyst which was 93.45%. According to the results, the g-C3N4/MoS2 composite showed a promising photocatalytic performance for hypophosphite oxidation. The improved photocatalytic performance for hypophosphite oxidation was due to the effective charge separation analyzed by the photoluminescence (PL) emission spectra. The transient photocurrent response measurement indicated that the g-C3N4/MoS2 composites (2.5 μA cm–2) were 10 times improved photocurrent intensity and 2 times improved photocurrent intensity comparing with the pure g-C3N4 (0.25 μA cm–2) and MoS2 (1.25 μA cm–2), respectively. The photocatalytic mechanism of hypophosphite oxidation was analyzed by adding some scavengers, and the recycle experiments indicated that the g-C3N4/MoS2 composite had a good stability.

2014 ◽  
Vol 938 ◽  
pp. 9-13
Author(s):  
Rajagopalan Krishnan ◽  
Jagannathan Thirumalai ◽  
Govindan Shanmuganathan ◽  
Itreesh Basha Shameem Banu ◽  
Rathinam Chandramohan

Highly uniform and self-assembled spheroid-like microstructures of Na0.5La0.5MoO4:Eu3+ were successfully synthesized by hexamine assisted hydrothermal route at 180 °C for 24 hours with neutral pH (7~8). Scanning electron microscope, X-ray diffraction pattern and energy dispersive X-ray analysis were used to characterize the morphology, crystal structure, size, and elements of the particles. It is found that, the particle size was well-controlled by increasing the molar concentration of the chelating agent hexamine. While, irradiating at 395 nm UV light, the emission spectra of micro-spheres shows remarkable characteristic dominance of red emission which is attributed to the transition 5D07F2. Furthermore, the synthesized homogeneous and well-crystallized Na0.5La0.5MoO4:Eu3+ microstructures will serve as an excellent phosphor candidate to produce high-quality luminescence for display devices in future.Keywords: Hydrothermal route, hexamine, self-assembly, photoluminescence


2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.


2020 ◽  
Vol 9 (1) ◽  
pp. 359-365
Author(s):  
Hui Shu ◽  
Yujian Song ◽  
Qiang Liu ◽  
Maobin Luo

AbstractTiO2 has many advantages, such as UV resistance, thermal stability, and antibacterial; the attention toward TiO2 composite materials (TCMs) is rapidly increasing in the protection of stone culture relics. An innovative rod-shaped TCM was synthesized in this study. The structure and morphology of TCM were studied by X-ray diffraction and scanning electron microscopy. The acid resistance, weather resistance, hydrophilicity, and photocatalytic performance of TCM had been investigated. The experimental results indicated that TCM has good protection effects. The stone sample treated with TCM has stronger acid resistance and weather resistance, better hydrophilicity, and more excellent photocatalytic activity compared with the untreated stone. More importantly, the stone treated with TCM has better acid resistance and weather resistance than that treated with normal shaped TiO2 materials of the previous study. This work describes an effective way to protect stone cultural relics.


Author(s):  
Mariola Kądziołka-Gaweł ◽  
Maria Czaja ◽  
Mateusz Dulski ◽  
Tomasz Krzykawski ◽  
Magdalena Szubka

AbstractMössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis-octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. This temperature can be treated as the second stage of dehydroxylation. The temperature dependence on the integral intensity ratio between bands centered at ~590 and 705 cm−1 (I590/I705) clearly reflects the temperature at which six-coordinated polyhedra are transformed into five-coordinated polyhedra. X-ray photoelectron spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p and O1s core levels, highlighted a route to identify the position of Si, Al, K and Fe cations in a structure of layered silicates with temperature. All the measurements show that the sample with a higher aluminum content and a lower iron content in octahedral sites starts to undergo a structural reorganization at a relatively higher temperature than the less aluminum-rich sample does. This suggests that iron may perform an important role in the initiation of the dehydroxylation of aluminoceladonites.


2016 ◽  
Vol 74 (3) ◽  
pp. 663-671 ◽  
Author(s):  
A. E. Burgos ◽  
Tatiana A. Ribeiro-Santos ◽  
Rochel M. Lago

Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA+) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer–Emmett–Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA+ in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g−1 for M9CTA+, M16CTA+ and M34CTA+, respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA+ to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA+, which allows the recovery and reuse of the adsorbent for at least five times.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2457 ◽  
Author(s):  
Haifeng Zhao ◽  
Jing Lv ◽  
Junshan Sang ◽  
Li Zhu ◽  
Peng Zheng ◽  
...  

In this work, a mixing-calcination method was developed to facilely construct MXene/CuO nanocomposite. CuO and MXene were first dispersed in ethanol with sufficient mixing. After solvent evaporation, the dried mixture was calcinated under argon to produce a MXene/CuO nanocomposite. As characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectra (XPS), CuO nanoparticles (60–100 nm) were uniformly distributed on the surface and edge of MXene nanosheets. Furthermore, as evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the high-temperature decomposition (HTD) temperature decrease of ammonium perchlorate (AP) upon addition of 1 wt% CuO (hybridized with 1 wt% MXene) was comparable with that of 2 wt% CuO alone, suggesting an enhanced catalytic activity of CuO on thermal decomposition of AP upon hybridization with MXene nanosheets. This strategy could be further applied to construct other MXene/transition metal oxide (MXene/TMO) composites with improved performance for various applications.


2014 ◽  
Vol 609-610 ◽  
pp. 250-254
Author(s):  
Ya Bin Li ◽  
Jin Tian Huang ◽  
Yan Fei Pan

In the paper, the TiO2nanomaterials adopted the microcrystalline cellulose as the template by the template method and sol-gel method was prepared. Through the infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), the surface morphology, composition and the type of the samples were characterized respectively. The influence of the macro morphology of TiO2photocatalytic performance to use the reaction of decolorization and degradation of methyl orange as model was analyzed. The results showed that TiO2which was produced by the template of sallix fiber was Rod-shaped and the average diameter size of nanocomposite structure was 20.592 nm, which can provide a new method of producing other morphology of TiO2.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


Sign in / Sign up

Export Citation Format

Share Document