Quantitative relationships between boehmite and γ-alumina crystallite sizes

2004 ◽  
Vol 19 (5) ◽  
pp. 1499-1503 ◽  
Author(s):  
J. Sánchez-Valente ◽  
F. Hernández-Beltrán ◽  
M.L. Guzman-Castillo ◽  
J.J. Fripiat ◽  
X. Bokhimi

Nanocrystalline boehmite obtained by limited hydrolysis of aluminum tri-sec-butoxide or aluminum chloride was aged under different conditions before being calcined above the dehydroxylation temperature. When aging was carried out under hydrothermal conditions, the condensation of the structural units obeyed a first-order kinetic law with apparent activation energy of 12.2 kcal/mol. Under dehydroxylation conditions, the boehmite fragmentation is accounted for by a simple power law that links its volume to that of the resulting γ-alumina. The main variable is the volatile compounds content (water for instance) in the fresh sample. In terms of texture, a better organization of the initial nanoparticles in the boehmite means a lower surface area and larger pore diameter in the corresponding γ-alumina.

Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Zhi-Hua Jiang ◽  
Jean Bouchard ◽  
Richard Berry

Abstract The finding that hexenuronic acid (HexA) groups can be selectively removed from kraft pulps by acid hydrolysis has provided an opportunity to reduce bleaching chemicals. However, there is evidence that the acid hydrolysis is not uniform. In this report, we evaluate the kinetics of acid hydrolysis of HexA in a xylan sample enriched with HexA, a conventional kraft pulp, and three modified kraft pulps: anthraquinone pulp (Kraft-AQ), polysulfide pulp (PS), and polysulfide-anthraquinone pulp (PS-AQ). We found that HexA present in the xylan and conventional kraft pulp behaved similarly toward the acid hydrolysis throughout. On the other hand, HexA present in the Kraft-AQ, PS-AQ and PS pulps was heterogeneous toward acid hydrolysis and the reaction can be separated into two pseudo-first-order kinetic phases, each of which has a different rate constant. The kinetic data provide evidence for the formation of lignin-HexA-xylan complexes during modified kraft pulping processes.


2021 ◽  
Vol 33 (5) ◽  
pp. 1176-1182
Author(s):  
R.P.T. Kim ◽  
M.N. Khan ◽  
S.Y. Liew ◽  
K. Awang

The acidic hydrolysis of goniothalamin was studied on the spectrophotometric kinetic study at different concentration of hydrochloric acid and temperature to determine the stability of the compound. Stability tests were performed using UV-VIS detection. This is a two-step reaction that involves formation of intermediate product. Rate constant of reactant forming intermediate product obeyed pseudo-first-order kinetic, while the second step to form final product is independent on the concentration of HCl. The structure of final products was identified by NMR and MS. The acidic hydrolysis pathway was proposed to involve the opening of lactone ring, followed by dehydration and formation of a double bond.


Author(s):  
Bright T Kusema ◽  
Chunlin Xu ◽  
Päivi Mäki-Arvela ◽  
Stefan Willför ◽  
Bjarne Holmbom ◽  
...  

The kinetics of the acid hydrolysis of arabinogalactans (AG) was studied isothermally in a batch reactor. AG was hydrolyzed with hydrochloric acid and the main parameters established were the acid concentration (pH), temperature and AG concentration. The hydrolysis rate increased with the acid concentration (pH) and temperature. Complete hydrolysis of AG to arabinose and galactose was achieved at 90°C and pH 1 without any further degradation of the sugars. A first-order kinetic model including two simultaneous reactions for the formation of arabinose and galactose was successfully fitted to the experimental data. The rate constants and activation energies were calculated from the model. The decrease of the average molecular weight was also explained by the model.


2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


2020 ◽  
Vol 10 (1) ◽  
pp. 001-010 ◽  
Author(s):  
Nikoletta Harsági ◽  
Betti Szőllősi ◽  
Nóra Zsuzsa Kiss ◽  
György Keglevich

Abstract The optimized HCl-catalyzed hydrolysis of alkyl diphenylphosphinates is described. The reaction times and pseudo-first-order rate constants suggested the iPr > Me > Et ∼ Pr ∼ Bu order of reactivity in respect of the alkyl group of the phosphinates. The MW-assisted p-toluenesulfonic acid (PTSA)-catalyzed variation means a better alternative possibility due to the shorter reaction times, and the alkaline hydrolysis is another option. The transesterification of alkyl diphenylphosphinates took place only in the presence of suitable ionic liquids, such as butyl-methylimidazolium hexafluorophosphorate ([bmim][PF6]) and butyl-methylimidazolium tetrafluoroborate ([bmim][BF4]). The application of ethyl-methylimidazolium hydrosulfate ([emim][HSO4]) and butyl-methylimidazolium chloride ([bmim][Cl]) was not too efficient, as the formation of the ester was accompanied by the fission of the O–C bond resulting in the formation of Ph2P(O)OH. This surprising transformation may be utilized in the phosphinate → phosphinic acid conversion.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


1976 ◽  
Vol 56 (2) ◽  
pp. 71-78 ◽  
Author(s):  
D. R. CAMERON ◽  
C. G. KOWALENKO

A small subsystem model was developed to simulate the major nitrogen flow pathways in an unsaturated soil treated with ammonium sulphate. A nonlinear Freundlich equilibrium model and a Langmuir kinetic model were used to describe mathematically the adsorption–desorption of soluble NH4+ to the exchangeable and clay-fixed phases, respectively. Time dependent, microbial mediated first-order kinetic models were used to quantify the ammonification and nitrification processes. The subsystem model was then used as a research tool to derive ammonification and nitrification rate coefficients for a preceding incubation experiment conducted using different soil moisture contents and temperatures. The model yields reasonably good fits to the observed data. A subsequent regression analysis relating the coefficients to temperature and moisture pointed out the importance of the temperature–water content interaction term in quantifying microbial mediated processes.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


2007 ◽  
Vol 73 (8) ◽  
pp. 2468-2478 ◽  
Author(s):  
Bernadette Klotz ◽  
D. Leo Pyle ◽  
Bernard M. Mackey

ABSTRACT A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.


Sign in / Sign up

Export Citation Format

Share Document