Dynamic indentation response of ZrHf-based bulk metallic glasses

2007 ◽  
Vol 22 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Ghatu Subhash ◽  
Hongwen Zhang

Static and dynamic Vickers indentations were performed on ZrHf-based bulk amorphous alloys. A decrease in indentation hardness was observed at higher strain rates compared with static indentation hardness. For equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Using bonded interface technique, the induced shear band patterns beneath the indentations were studied. In static indentations, the majority of the deformation was primarily accommodated by closely spaced semicircular shear bands surrounding the indentation. In dynamic indentations two sets of widely spaced semicircular shear bands with two different curvatures were observed. The observed shear band patterns and softening in hardness were rationalized based on the variations in the confinement pressure, strain rate, and temperature within the indentation region during dynamic indentations. It is also proposed that free volume migration and formation of nano-voids leading to cracking are favored due to adiabatic heating and consequently cause the observed softening at high strain rates.

1993 ◽  
Vol 321 ◽  
Author(s):  
H. Chen ◽  
Y. He ◽  
G. J. Shiflet ◽  
S. J. Poon

ABSTRACTWe report the first direct observation of crystallization induced in the slipped planes of aluminum based amorphous alloys by bending the amorphous ribbons. Nanometer-sized crystalline precipitates are found exclusively within a thin layer (shear band) in the slipped planes extending across the deformed amorphous alloy ribbons. It is also found that the nanocrystalline aluminum can be produced by ball-Milling. It is likely that local atomic rearrangements within the shear bands create the nanocrystals which appear after plastic deformation.


1998 ◽  
Vol 554 ◽  
Author(s):  
David M. Owen ◽  
Ares J. Rosakis ◽  
William L. Johnson

AbstractThe understanding of dynamic failure mechanisms in bulk metallic glasses is important for the application of this class of materials to a variety of engineering problems. This is true not only for design environments in which components are subject to high loading rates, but also when components are subjected to quasi-static loading conditions where observations have been made of damage propagation occurring in an unstable, highly dynamic manner. This paper presents preliminary results of a study of the phenomena of dynamic crack initiation and growth as well as the phenomenon of dynamic localization (shear band formation) in a beryllium-bearing bulk metallic glass, Zr41.25Ti13.75Ni10Cu12.75Be22.5. Pre-notched and prefatigued plate specimens were subjected to quasi-static and dynamic three-point bend loading to investigate crack initiation and propagation. Asymmetric impact loading with a gas gun was used to induce dynamic shear band growth. The mechanical fields in the vicinity of the dynamically loaded crack or notch tip were characterized using high-speed optical diagnostic techniques. The results demonstrated a dramatic increase in the crack initiation toughness with loading rate and subsequent crack tip speeds approaching 1000 m s−1. Dynamic crack tip branching was also observed under certain conditions. Shear bands formed readily under asymmetric impact loading. The shear bands traveled at speeds of approximately 1300 m s−1 and were accompanied by intense localized heating measured using high-speed full-field infrared imaging. The maximum temperatures recorded across the shear bands were in excess of 1500 K.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 358 ◽  
Author(s):  
Alexandr Aronin ◽  
Galina Abrosimova

This work is devoted to a brief overview of the structure and properties of amorphous-nanocrystalline metallic alloys. It presents the current state of studies of the structure evolution of amorphous alloys and the formation of nanoglasses and nanocrystals in metallic glasses. Structural changes occurring during heating and deformation are considered. The transformation of a homogeneous amorphous phase into a heterogeneous phase, the dependence of the scale of inhomogeneities on the component composition, and the conditions of external influences are considered. The crystallization processes of the amorphous phase, such as the homogeneous and heterogeneous nucleation of crystals, are considered. Particular attention is paid to a volume mismatch compensation on the crystallization processes. The effect of changes in the amorphous structure on the forming crystalline structure is shown. The mechanical properties in the structure in and around shear bands are discussed. The possibility of controlling the structure of fully or partially crystallized samples is analyzed for creating new materials with the required physical properties.


2008 ◽  
Vol 604-605 ◽  
pp. 229-238
Author(s):  
Marcello Baricco ◽  
Tanya A. Başer ◽  
Gianluca Fiore ◽  
Rafael Piccin ◽  
Marta Satta ◽  
...  

Rapid quenching techniques have been successfully applied since long time for the preparation of metallic glasses in ribbon form. Only in the recent years, the research activity addressed towards the synthesis of bulk metallic glasses (BMG), in form of ingots with a few millimetres in thickness. These materials can be obtained by casting techniques only for selected alloy compositions, characterised by a particularly high glass-forming tendency. Bulk amorphous alloys are characterised by a low modulus of elasticity and high yielding stress. The usual idea is that amorphous alloys undergo work softening and that deformation is concentrated in shear bands, which might be subjected to geometrical constraints, resulting in a substantial increase in hardness and wear resistance. The mechanical properties can be further improved by crystallisation. In fact, shear bands movement can be contrasted by incorporating a second phase in the material, which may be produced directly by controlled crystallisation. Soft magnetic properties have been obtained in Fe-based systems and they are strongly related to small variations in the microstructure, ranging from a fully amorphous phase to nanocrystalline phases with different crystal size. The high thermal stability of bulk metallic glasses makes possible the compression and shaping processes in the temperature range between glass transition and crystallisation. Aim of this paper is to present recent results on glass formation and properties of bulk metallic glasses with various compositions. Examples will be reported on Zr, Fe, Mg and Pd-based materials, focussing on mechanical and magnetic properties.


2015 ◽  
Vol 24 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Aggelos C. Iliopoulos ◽  
Nikolaos S. Nikolaidis ◽  
Elias C. Aifantis

AbstractTsallis nonextensive statistics is employed to characterize serrated flow, as well as multiple shear band formation in ultrafine grain (UFG) size materials. Two such UFG materials, a bi-modal Al-Mg alloy and a Fe-Cu alloy, were chosen. In the first case, at low strain rates serrated flow emerges as recorded in the stress-strain graphs, whereas at high strain rates, extensive shear banding occurs. In the second case, multiple shear banding is the only mechanism for plastic deformation, but serrations in the stress-strain graph are not recorded. The analysis aims at the estimation of Tsallis entropic index qstat (stat denotes stationary state), as well as the estimation of fractal dimension. The results reveal that the distributions of serrations and shear bands do not follow Gaussian statistics as implied by Boltzmann-Gibbs extensive thermodynamics, but are approximated instead by Tsallis q-Gaussian distributions, as suggested by nonextensive thermodynamics. In addition, fractal analysis of multiple shear band images reveals a (multi)fractal and hierarchical profile of the spatial arrangement of shear bands.


2013 ◽  
Vol 703 ◽  
pp. 20-23
Author(s):  
Jian Sheng Gu ◽  
Hui Feng Bo ◽  
Hong Li ◽  
Zhan Xin Zhang

Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 BMGs was studied by using Rockwell indention method. The significant difference in plastic deformation ability can be ascribed to different shear banding features. Meanwhile, by using the fusible coating method, thermal effect on shear bands was investigated. We did not see apparently temperature rise in shear bands of these two BMGs through Rockwell indentation.


2007 ◽  
Vol 345-346 ◽  
pp. 645-648
Author(s):  
Jung G. Lee ◽  
Kee Sun Sohn ◽  
Sung Hak Lee ◽  
Nack J. Kim ◽  
Choong Nyun Paul Kim

Microfracture mechanisms of Zr-based bulk metallic glass (BMG) alloy containing ductile crystalline particles were investigated by directly observing microfracture processes using an in situ loading stage. Strength of the BMG alloy containing crystalline particles was lower than that of the monolithic BMG alloy, while ductility was higher. According to the direct microfracture observation, crystalline particles initiated shear bands, acted as blocking sites of shear band or crack propagation, and provided the stable crack growth which could be confirmed by the R-curve analysis, although they negatively affected apparent fracture toughness. This increase in fracture resistance with increasing crack length improved overall fracture properties of the alloy containing crystalline particles, and could be explained by mechanisms of blocking of crack or shear band propagation, formation of multiple shear bands, crack blunting, and shear band branching.


2017 ◽  
Vol 891 ◽  
pp. 504-508
Author(s):  
Jozef Miškuf ◽  
Kornel Csach ◽  
Alena Juríková ◽  
Mária Huráková ◽  
Martin Miškuf ◽  
...  

In metallic glasses plastic deformation occurs via the creation and the propagation of a softened region in the shear bands. Some of the high strength metallic glasses (as Zr-based metallic alloys) exhibit complex shear band topography and the final failure respects the allocation of the shear bands. We studied the differences in the fracture surfaces of Zr-and Mg-based amorphous alloys. Ductile behaviour of the shear bands in Zr-based amorphous alloy tends to the dimple creation during the failure. On the fracture surfaces the vein pattern morphology manifestations were present. Conchoidal fracture was typical for Mg-based amorphous glass. Two different surface morphologies, plumes and rib marks ornament the fracture surfaces.


2007 ◽  
Vol 22 (2) ◽  
pp. 419-427 ◽  
Author(s):  
Y. Zhang ◽  
N.A. Stelmashenko ◽  
Z.H. Barber ◽  
W.H. Wang ◽  
J.J. Lewandowski ◽  
...  

Under ambient conditions, plastic flow in metallic glasses is sharply localized into shear bands. The heat content of, and consequent temperature rise at, shear bands in three bulk metallic glasses are compared using a recently reported fusible coating method. The minimum shear offsets necessary to detect local heating are determined. It is shown that the dependence of heat content on offset is consistent with frictional heating in the band. The effective stress on the band undergoing shear is 50–70% of the macroscopic shear stress, a ratio compared with simulations of shear-band initiation and operation. It is also noted that frictional heating can occur not only at shear bands, but also at mixed-mode cracks.


Sign in / Sign up

Export Citation Format

Share Document