Synthetic control over the structure and symmetry of carbon nanotubes: Towards biomedical applications

2011 ◽  
Vol 1297 ◽  
Author(s):  
Michael S. Lowry ◽  
Alfredo Rayms-Keller ◽  
Karen J. Long ◽  
Francisco Santiago ◽  
Victor H. Gehman ◽  
...  

ABSTRACTCarbon nanotubes (CNTs) are appealing materials for biomedical applications due to their unique chemical, electrical and mechanical properties. The emphasis of the present work is on controlling the structure and symmetry of carbon nanotubes by imposing an applied stress at the CNT growth site. CNTs were grown under these conditions using standard chemical vapor deposition (CVD) techniques and were subsequently characterized with a scanning electron microscope; the methodology and implications of this approach are discussed herein.

2009 ◽  
Vol 79-82 ◽  
pp. 1671-1674 ◽  
Author(s):  
Xiao Ying Lu ◽  
Hao Wang ◽  
Sheng Yi Xia ◽  
Jian Xin Wang ◽  
Jie Weng

Carbon nanotubes (CNTs)/hydroxyapatite (HA) nanocomposites have been successfully fabricated by a novel method for the biomedical applications, which is in situ growing CNTs in HA matrix in a chemical vapor deposition (CVD) system. The results show that it is feasible to in situ grow CNTs in HA matrix by CVD for the fabrication of CNTs/HA nanocomposites. Multi-walled CNTs with 50-80 nm in diameter have been grown in situ from HA matrix with the pretreatment of sintering at 1473K in air. The nanocomposites are composed with carbon crystals in CNTs form, HA crystallites and calcium phosphate crystallites, one of most important CaP bioceramics. And the CNTs content is about 1% proportion by weight among the composites in our experiments, which can enhance the HA mechanical properties and the CNTs content does not affect the HA performances. These CNTs/HA nanocomposites have the potential application in the biomedical fields.


2014 ◽  
Vol 14 (1) ◽  
pp. 38
Author(s):  
Fritzie Hannah Baldovino ◽  
Joseph L. Auresenia

The effects of experimental factors such as type of catalyst (nickel and cobalt) and substrate (iron and silicon wafer) in the growth of carbon nanotubes (CNT) from CO2 by microwave plasma-enhanced chemical vapor deposition (MPECVD) was systematically studied. Catalyst size and CNT grown were examined using scanning electron microscope (SEM). Furthermore, gas chromatography (GC) was used to analyze the effluent gas. Moreover, suitable type of catalyst and substrate were determined in terms on the amount of CNT grown, purity, and carbon conversion.Keywords : carbon nanotubes, chemical vapor deposition, nanotechnology


2011 ◽  
Vol 306-307 ◽  
pp. 1383-1386 ◽  
Author(s):  
Yu Chen Yue ◽  
W. Ren ◽  
M.L. Zhao ◽  
M.X. Guo ◽  
Y.T. Zhang ◽  
...  

A series of the carbon nanotubes were synthesized on quartz substrates in a chemical vapor deposition (CVD) process. Ethylene was used as the carbon source, and ferrocene used as the catalyst. The scanning electron microscope (SEM) and Raman spectrum were employed to investigate the effects of reaction temperature on the structure and components of the carbon nanotubes. The results showed that, when the reaction temperature is 860°C , the best synthesis of the well-distributed carbon nanotubes with less of non-carbon impurity was achieved. At this condition, The length of the CNTs was 95 μm and the diameter was 104 nm.


2018 ◽  
Vol 18 (06) ◽  
pp. 1850035
Author(s):  
Punyapriya Mishra ◽  
Narasingh Deep ◽  
Sagarika Pradhan ◽  
Vikram G. Kamble

Carbon nanotubes (CNTs) are widely explained in fundamental blocks of nanotechnology. These CNTs exhibit much greater tensile strength than steel, even almost similar to copper, but they have higher ability to carry much higher currents, they seem to be a magical material with all these mentioned properties. In this paper, an attempt has been made to incorporate this wonder material, CNT, (with varying percentages) in polymeric matrix (Poly methyl methacrylate (PMMA)) to create a new conductive polymer composite. Various mechanical tests were carried out to evaluate its mechanical properties. The dielectric properties such as dielectric loss and dielectric constant were evaluated with the reference of temperature and frequency. The surface structures were analyzed by Scanning Electron Microscope (SEM).


2011 ◽  
Vol 339 ◽  
pp. 3-6
Author(s):  
Chun Hua Xu ◽  
Kelvin Leung ◽  
Charles Surya

ZnO nanowires were grown on Au-coated GaN layer on c-plane sapphire by chemical vapor deposition (CVD). As-prepared ZnO oxides were characterized by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The results show that the growth of ZnO nanowires strongly depends on the location of GaN/sapphire substrates. The diameters of the resulting nanowires were in the range 60 nm with typical length about 10μm. The formation of ZnO nanowires with different morphologies at various positions of the substrate is explained by the mechanisms of vapor-solid and vapor-liquid-solid, respectively.


2013 ◽  
Vol 662 ◽  
pp. 3-6
Author(s):  
Chang Yu ◽  
Xiang Tong Meng ◽  
Lei Zhang ◽  
Jie Shan Qiu

Double-walled carbon nanotubes (DWCNTs) have been synthesized by a floating catalytic chemical vapor deposition method (FC-CVD) in diameter-varied reactor with xylene as carbon sources, ferrocene as catalyst precursor, and sulfur as additive. The as-grown products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Raman spectrometer. The results show that DWCNTs with a high graphite degree is centimeter-scale in length, and the inner diameter varies in the range of 1.5-1.7 nm. The effect of reactor diameter on the structure and morphology of the products was also investigated and compared. It is believed that the diameter-varied reactor may become a feasible route to the mass and continuous production of DWCNTs.


2003 ◽  
Vol 788 ◽  
Author(s):  
K. G. Belay ◽  
J Jackson ◽  
Yan Xin

ABSTRACTBoth carbon nanotubes and carbon nanofibers were grown on a thick nickel substrate by means of microwave plasma enhanced chemical vapor deposition (MPECVD) process using 20% CH4 and 80% H2 at a temperature of 750°C and a pressure of 50 Torr. The substrate was pre-abraded with 1.0μm diamond powder and 15.0 μm diamond paste to increase the rate of nucleation. When the substrate is taken out of the reactor the film detaches itself completely from the nickel. Unusual outgrowth structures appear jutted on one section of the substrate in a symmetrical manner. These structures were very hard and, when analyzed using environmental scanning electron microscope (ESEM), Raman microscopy and transmission electron microscope (TEM), micro-trees and an abundance of multi wall carbon nanotubes (MWCNTs) and nanofibers were observed. An attempt to measure the hardness of the film using a nano-indenter was inconclusive due to the extreme hardness of the material produced.


2016 ◽  
Vol 3 (01) ◽  
Author(s):  
Holia Onggo ◽  
Rike Yudianti ◽  
Endang Ruchiat

Carbon nanotube-rayon composite filaments was fabricated by spinning and coagulation of the mixture of 100mL functionalized carbon nanotube dispersion (containing 0.72 g FCNT) and cellulose xanthate in NaOH solution using viscose process. In the process, CNT was functionalized using mixture of acidic solution ( H2SO4/HNO3, 3:1 v/v). Influence of functionalized (FCNT) and non-functionalized carbon nanotubes (nFCNT) on the fabrication of rayon nanocomposite filament was studied. Physical and morphological properties of the nanocomposite filaments were characterized by single filament tenacity tester, photo micrograph, scanning electron microscope (SEM) and transmission electron microscope (TEM). Filterability and mechanical properties of FCNT-rayon nanocomposite filament greatly improved by reducing clogging constant from 1689 to 153 and increasing tenacity from 2.72 to 3.01 g/denier and decreasing elongation from 57.1 to 36.5% respectively compared with those of nFCNT-rayon nanocomposite filament.Keywords: functionalized multi-walled carbon nanotubes, nanocomposite filament, mechanical properties, filterability, dispersion  ABSTRAKRayon nanocomposite filaments telah dibuat melalui proses pemilinan (spinning) dan koagulasi (coagulation) dari campuran 100 mL larutan functionalized carbon nanotube dispersion (FCNT=0,72 g), selulosa santat dalam larutan NaOH melalui proses viskosa. CNT di functionalisasi (FCNT) menggunakan campuran larutan asam (H2SO4/HNO3, 3:1 v/v). Pengaruh fungsionalisasi CNT pada pembuatan rayon nanocomposite filaments dipelajari dengan cara membandingkannya dengan CNT tanpa fungsionalisasi (nFCNT). Sifat fisik dan morfologi dari rayon-nanocomposite filaments dikarakterisasi menggunakan tenacity tester, photo micrograph, scanning electron microscope (SEM) dan transmission electron microscope (TEM). Viskosa FCNT memiliki daya saring (Kw) cukup baik yaitu 155, sedangkan viskosa nFCNT  memiliki daya saring 1689 (tidak baik). Kekuatan mekanik dari FCNT-rayon nanocomposite filaments berturut turut adalah 3,01 g/denier (tenacity), dan 36,5% (elongation), lebih baik dibandingkan dengan nFCNT-rayon nanocomposite filament: 2,72 g/denier (tenacity) dan 57,1% (elongation).Kata kunci: fungsionalisasi multi-walled carbon nanotubes, rayon-nanocomposite filament, sifat mekanik, daya saring, dispersi


2020 ◽  
Vol 34 (17) ◽  
pp. 2050155
Author(s):  
Naiyuan Cui ◽  
Fei Wang ◽  
Hanyuan Ding ◽  
Lei Guo

Diamond etching of [Formula: see text] orientation is processed in chemical vapor deposition (CVD) chamber using H2 as reactive gas. Etching process happens on diamond substrates using a variety of etch mask materials including copper and nickel. Scanning electron microscope (SEM) and atomic force microscope (AFM) show different kinds of diamond etching pattern of two mask materials. It is observed that the etching pit of copper is tetrahedron, while the etching pit of nickel is step structure. This indicates diverse etching mechanism of diamond etched by different metal. Observing the surface etching topography of diamond and analyzing the etching mechanism of different metal can help study the growth of diamond by CVD and controllable etching of diamond.


2013 ◽  
Vol 333-335 ◽  
pp. 1975-1978
Author(s):  
Peng Zhang ◽  
Yan Liu ◽  
Jing Wei Guo ◽  
Xiao Pin Zhang

Catalyst-free InGaP nanoneedles were grown on Si substrate via metalorganic chemical vapor deposition. From scanning electron microscope (SEM) images, various nanoneedles were observed and the relevant growth mechanism was discussed.


Sign in / Sign up

Export Citation Format

Share Document